

AGÊNCIA NACIONAL DE TRANSPORTES TERRRESTES ANTT

RECURSO DE DESENVOLVIMENTO TECNOLÓGICO RDT:

MÉTODO PARA CÁLCULO DO NÍVEL DE SERVIÇO EM RODOVIAS DE PISTA SIMPLES: DESENVOLVIMENTO A PARTIR DE DADOS DA RODOVIA BR-040

RELATÓRIO FINAL

RECURSO DE DESENVOLVIMENTO TECNOLÓGICO - RDT

MÉTODO PARA CÁLCULO DO NÍVEL DE SERVIÇO EM RODOVIAS DE PISTA SIMPLES: DESENVOLVIMENTO A PARTIR DE DADOS DA RODOVIA BR-040

RESUMO: O Highway Capacity Manual (HCM) é comumente utilizado para avaliar a capacidade e o nível de serviço de rodovias de pista simples em vários países, incluindo o Brasil. Entretanto, foi desenvolvido com dados de rodovias norte-americanas que possuem características de veículos e de condutores diferentes das encontradas no Brasil. A versão 6 do HCM, que está em fase final de revisão, deverá tratar da capacidade e do nível de serviço de rodovias com base na Densidade de Veículos em Pelotões (FD). Essa medida de desempenho vem sendo estudada e apontada como mais adequada, se comparada com as medidas de desempenho que vem sendo utilizadas pela atual versão do HCM (2010): a Velocidade Média de Viagem e a Porcentagem de Tempo Viajando em Pelotões, esta última considerada inviável de ser obtida diretamente em campo. No Brasil, há estudos que vem sendo realizados com o intuito de obter um método adequado para calcular nível de serviço em rodovias de pista simples, que é o objetivo principal deste trabalho. Para isso, foi obtido um conjunto de dados de tráfego na rodovia BR-040, em segmentos localizados em Minas Gerais e em Goiás, com o intuito principal de calibrar e validar o simulador de tráfego utilizado nesta pesquisa, o VISSIM. A calibração foi realizada com base em um Algoritmo Genético, mas somente após estimar outros parâmetros fundamentais do simulador, como aqueles ligados à distribuição de velocidades desejadas e ao desempenho de veículos pesados. Com o simulador calibrado, foram gerados dados de tráfego em segmentos viários hipotéticos, com uma ampla gama de características geométricas e de tráfego. Foram ajustados modelos de tráfego para esses dados de simulação nas seguintes condições: (i) sem zonas de ultrapassagens proibidas e sem faixas adicionais (denominados "modelos base"); (ii) com faixas adicionais; e (iii) com zonas de ultrapassagens proibidas. Foram discutidas quais as situações, em termos de geometria e de tráfego, que determinavam os maiores impactos devido à presença de faixas adicionais e de zonas de ultrapassagens proibidas. Parte dos dados de tráfego coletados em campo, que foram usados na validação do simulador calibrado, também foram usados para comparar as estimativas de FD e de nível de serviço obtidos em campo com outros modelos, incluindo os propostos neste trabalho. Os resultados dessa análise indicaram que dois modelos quadráticos entre fluxo unidirecional e FD (propostos neste trabalho e outro encontrado na literatura) produziram valores de nível de serviço e de FD mais aderentes ao que foram observados em campo. A utilização do HCM, tanto para a versão de 2010 quanto para a provável nova proposta que será publicada em 2019 – sem nenhuma adaptação - tende a subestimar o nível de serviço em rodovias brasileiras, o que provocaria investimentos antes do momento adequado.

PALAVRAS-CHAVE: Rodovias de pista simples, nível de serviço, simulação de tráfego

ÍNDICE

1. VISÃO GERAL DO PROJETO	1
2. REVISÃO DA LITERATURA	8
3. COLETA DE DADOS DE TRÁFEGO	38
4. CALIBRAÇÃO E VALIDAÇÃO DO VISSIM	50
5. MODELOS DE TRÁFEGO	75
6. CONSIDERAÇÕES FINAIS	107
REFERÊNCIAS	111
APÊNDICE A	121
APÊNDICE B	132
APÊNDICE C	148
APÊNDICE D	161
APÊNDICE E	190

1 VISÃO GERAL DO PROJETO

Este relatório apresenta os resultados referentes ao projeto desenvolvido com Recurso de Desenvolvimento Tecnológico (RDT) cujo título é "Método para cálculo do nível de serviço em rodovias de pista simples: desenvolvimento a partir de dados da rodovia BR-040".

1.1 Introdução e Objetivos

A infraestrutura rodoviária brasileira apresenta considerável diferença quando comparada com a de outros países, como, por exemplo, a infraestrutura norte americana. A densidade da malha rodoviária brasileira é comparativamente baixa, com um índice de 25 km de rodovias pavimentadas para cada 1.000 km² de área, ao passo que, nos EUA, esse índice é de 438,1 km de rodovias pavimentadas por 1.000 km² de área (ABCR, 2016).

Além disso, o Brasil possuía, em 2014, uma frota de cerca de 77 milhões de veículos, o que significa 4,9 veículos por habitante. Por sua vez, os EUA apresentam uma frota de 253 milhões de veículos e uma proporção de 1,2 veículos por habitante no mesmo período (CNT, 2017). Desse volume brasileiro, a frota do estado de Minas Gerais representa 10,94% da frota total e possui a maior malha de rodovias federais, além de uma extensa malha rodoviária estadual. A frota do estado apresentou um crescimento de 301% de 2001 a 2016, sendo a segunda maior do país (CNT, 2017).

Ainda que a frota de veículos tenha apresentado significativo crescimento ao longo dos últimos anos, algumas vezes acompanhando o crescimento econômico do país, o mesmo não pode se afirmar a respeito do aumento de capacidade das rodovias. De acordo com o Departamento de Edificações e Estradas de Rodagem de Minas Gerais (DEER-MG, 2017), a malha rodoviária do Estado de Minas Gerais possui 37.721,68 km de extensão. Desse total, 28.232,45 km são de rodovias pavimentadas, ou seja, cerca de 74,84% da malha estadual. A quilometragem de rodovias duplicadas é de apenas 2.465,38, sendo que, em junho de 2017, havia obras de duplicação em cerca de 237,10 km. Considerando apenas as rodovias pavimentadas, 90,42% da malha rodoviária de Minas Gerais é composta por rodovias de pista simples.

Nesse sentido, a qualidade de serviço da circulação em rodovias de pistas simples é fundamental para a competitividade da economia nacional e reflete nos custos do setor de transportes e, em consequência, na sociedade. Além disso, como o fluxo de tráfego em determinado segmento rodoviário, normalmente, é composto por diversos tipos de veículos, tais como caminhões, veículos de passeio e ônibus, com diferentes capacidades de carga e de potência, as velocidades possíveis de serem alcançadas com segurança são distintas. Mesmo que todos os veículos possuíssem características semelhantes, as expectativas dos motoristas são bastante diversas, refletindo em diferentes velocidades de viagem desejadas. Ainda que sob as mesmas circunstâncias, nenhuma corrente de tráfego irá se comportar da mesma maneira (Roess, 2011).

Os motoristas mais impacientes podem realizar manobras arriscadas para ultrapassarem os veículos de menor velocidade, especialmente quando há a formação de longas filas ao longo de determinados segmentos rodoviários. A formação desses pelotões se deve a uma gama de características da via, tais como geometria, volume de tráfego e, também, das características dos veículos e da forma de dirigir dos motoristas (Liu, 2017). Por isso, Alaix (2016) afirma que a qualidade da circulação em rodovias de pista simples guarda relação direta e próxima com a atenção dispensada às ultrapassagens, pois, quando negligenciadas, podem ocasionar a redução da velocidade média de viagem e redução dos tempos de viagem. Ainda há a implantação de faixas adicionais para a ultrapassagem dos veículos mais lentos, que também surge como uma das alternativas para mitigar esses transtornos e melhorar a operação.

A implantação de faixas adicionais possibilita que os veículos mais lentos se posicionem à direita de circulação para que os veículos mais velozes os ultrapassem com segurança e sem a realização de manobras de ultrapassagens perigosas. Dessa forma, as faixas adicionais proporcionam a diminuição da densidade da corrente de tráfego e aumentam a dispersão dos pelotões que se formaram ao longo dos segmentos rodoviários. Assim, a implantação das faixas adicionais pode representar mais qualidade na operação das rodovias.

Para avaliar a qualidade de uma rodovia, pode ser utilizado o conceito de nível de serviço, que é um importante fator para a decisão de investimentos públicos (Penmetsa, 2015). A aferição do nível de serviço tem sido feita no caso da concessão da rodovia

MG-050, por exemplo. Para isso, o método proposto no HCM 2010 deve ser usado para determinar o nível de serviço nessa rodovia de pista simples, embora sem o devido ajuste às condições das vias mineiras. O ajuste é importante porque o HCM foi desenvolvido com dados de tráfego obtidos em rodovias dos Estados Unidos e do Canadá, sendo recomendado, pelo próprio HCM 2010, a adaptação dos parâmetros à cada região em que o manual será aplicado (TRB, 2010).

O HCM 2010 (TRB, 2010) estabelece as condições de referência de uma rodovia, que são as características de um segmento de rodovia que não possui restrições de geometria, de fluxo de tráfego e de condições ambientais. Para rodovias de pista simples, essas condições básicas incluem a possibilidade de realização de manobras de ultrapassagens durante todo o trajeto; a largura da faixa de rolamento maior que 3,6 metros; a largura do acostamento maior que 1,8 metros; correntes de tráfego formadas somente por automóveis; relevo plano; e o fluxo de tráfego é ininterrupto (sem haver, por exemplo, interseções semaforizadas e muitos acessos).

Entretanto, as melhores condições para que as manobras sejam realizadas não são encontradas em todos os segmentos rodoviários, como a existência de zonas de ultrapassagens permitidas ou a existência de intervalo de tempo entre veículos no fluxo oposto, com visibilidade suficiente. Soma-se a isso as características dos veículos envolvidos na ultrapassagem, que podem ter uma velocidade média de viagem bem baixa. Essa situação leva a tempos de viagem abaixo da expectativa, bem como aumenta o desconforto dos motoristas que trafegam nesses segmentos, implicando em uma percepção negativa da qualidade de serviço pelos usuários das vias.

As medidas de desempenho utilizadas pelo HCM 2010 para determinar o nível de serviço são, dependendo da classe da rodovia de pista simples, a porcentagem de tempo viajando em pelotões (*PTSF – Percent Time Spent Following*), a velocidade média de viagem (*ATS – Avarage Travel Speed*) e a porcentagem da velocidade de fluxo livre (*PFFS – Percent of Free Flow Speed*). Entretanto, algumas pesquisas (Penmetsa *et al.*, 2015; Moreno *et al.*, 2014) buscaram medidas de desempenho alternativas às propostas pelo HCM 2010 como forma de melhor representar a realidade dos segmentos rodoviários de pista simples, considerando-se a complexidade de se obtê-los diretamente do campo, principalmente a *PTSF* (Luttinen, 2001; Bessa Jr. *et al.*, 2017).

Algumas pesquisas (Utimura *et al.*, 2017; Bessa Jr., 2015; Pereira e Bessa Jr., 2017) têm demonstrado que a adoção do método previsto no HCM apresenta uma tendência de subestimar o nível de serviço em rodovias brasileiras, o que leva a investimentos fora do momento ideal. No Brasil, valendo-se fortemente de simulação de tráfego, alguns estudos propuseram adaptações dos critérios do HCM às características dos veículos e condutores nacionais, como pode ser observado nos trabalhos de Egami (2006) e Mon-Ma (2008). Outros trabalhos, como o de Bessa Jr. (2015), desenvolveram modelos de tráfego distintos aos do HCM 2010, buscando, como meta, que eles representem melhor a realidade das rodovias brasileiras.

Sendo assim, Bessa Jr. e Setti (2018), além de buscar um método para calcular nível de serviço que não fosse necessariamente com a mesma estrutura do HCM, ainda estudaram medidas de desempenho encontradas na literatura que pudessem ser mais adequadas para determinar o nível de serviço em rodovias brasileiras, como: a ATS; o atraso percentual; a densidade de veículos em pelotões (FD); a densidade dos automóveis ($D_{d,car}$); a PTSF; a porcentagem de veículos em pelotões (PF); a porcentagem de veículos retidos; a taxa de ultrapassagens; e três medidas de desempenho que dependem do número de veículos dentro e fora de pelotões: o tamanho médio dos pelotões, o grau de congestionamento e a liberdade do fluxo.

Dentre todas essas medidas de desempenho, Bessa Jr. e Setti (2018) recomendaram ou a FD ou a $D_{d,car}$ para determinar a qualidade de serviço das rodovias de pista simples brasileiras. Parte desse resultado é corroborado pelo próprio Transportation Research Bo-ard (TRB), responsável pelo HCM, que deverá indicar a FD como medida de desempenho do novo método voltado para rodovias de pistas simples (para a 6^a edição do manual, aqui chamado de HCM 6), conforme relatório da proposta desenvolvido por Washburn et al. (2018).

Sendo assim, parece haver uma tendência a usar FD como medida de desempenho para rodovias de pista simples, mas é preciso desenvolver métodos que sejam baseados e voltados para às rodovias brasileiras, que possuem características próprias. Bessa Jr. (2015) ainda recomenda que se dedique mais atenção aos impactos provocados nos modelos de tráfego decorrentes de zonas de ultrapassagens proibidas e, também, de segmentos com a existência de faixas adicionais, que são objetos de estudo desta pesquisa.

Diante do exposto, a meta do projeto consistiu em obter um método adequado para calcular o nível de serviço em rodovias de pista simples, tendo, como base, os dados de trechos de rodovias de pista simples sob concessão da Via040. Os objetivos específicos traçados para a pesquisa foram:

- Obter um conjunto de dados de tráfego representativo de diversas condições operacionais de trechos de rodovias de pista simples;
- Selecionar um simulador de tráfego para rodovias de pista simples que forneça as informações necessárias para subsidiar o desenvolvimento do método e
 obter uma versão recalibrada capaz de reproduzir a operação dos trechos estudados com um grau de fidelidade adequado;
- 3. Estudar as relações entre o fluxo de tráfego e as medidas de desempenho que caracterizem o comportamento das rodovias de pista simples brasileiras; e
- 4. Estudar o efeito sobre a qualidade de serviço de características da via, como as faixas adicionais e as zonas de ultrapassagens proibidas.

1.2 Resultados alcançados

1.2.1 Inovação tecnológica

As pesquisas que envolvem a obtenção de novas técnicas de determinação do nível de serviço em rodovias são praticamente inexistentes no Brasil. Os principais estudos nessa área são voltados para rodovias de pista simples, mas ainda com importantes lacunas a serem resolvidas. Embora esta proposta não tenha a intenção de ser suficiente para criação de um método de cálculo do nível de serviço em rodovias de pista simples que, efetivamente, possam ser preconizados por agências reguladores e utilizados pelos órgãos gerenciadores (públicos ou privados), espera-se que ele contribua como forte subsídio nesse sentido.

Há estudos (Utimura et al., 2007; Pereira e Bessa Jr., 2017) que indicam que o método do HCM tende a subestimar o nível de serviço das rodovias brasileiras. Embora haja indubitável valor na proposta do HCM, acredita-se que a melhor solução seja a proposição de um método próprio que leva em consideração os dados brasileiros. Esse método

pode ser diferente da estrutura apresentada pelo HCM assim como também é possível usar parte da proposta do manual americano, desde que, comprovadamente, seja a melhor escolha no sentido de representar bem as condições das estradas brasileiras.

1.2.2 Capacitação técnica da equipe envolvida

Buscou-se, com este projeto de pesquisa, também contribuir, substancialmente, para a capacitação técnica dos envolvidos. A equipe envolvida no projeto foi composta por duas estagiárias —alunas de graduação do curso de Engenharia de Transportes do Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG). O projeto contribuiu para a formação acadêmica delas, tanto por meio da elaboração de trabalhos técnicoscientíficos e relatórios, como na experiência em campo com as coletas de dados e na utilização de simuladores de tráfego, complementando a formação de sala de aula. As estagiárias são: Anáiram Lima Costa e Carolina Moreira de Lima.

Por se tratar de um assunto de vanguarda, o projeto também contribuiu para a formação tanto dos técnicos seniores — os engenheiros da Via040, Aline Ferreira Andalício e Diego Milli da Costa Velho, como do próprio coordenador, Prof. José Elievam Bessa Júnior, da Universidade Federal de Minas Gerais (UFMG). Com relação aos primeiros, a obtenção de métodos alternativos de cálculo do nível de serviço deverá fazer com que o conhecimento adquiro seja disseminado dentro da própria Concessionária Via040 (ou de outras concessionárias do grupo empresarial que detém a concessão). Com relação ao segundo, é fato que qualquer projeto de pesquisa promoveu um avanço na forma como o coordenador encara os problemas relacionados com nível de serviço e capacidade de rodovias.

O projeto conta, ainda, com a contribuição valiosa de um aluno de Mestrado em Geotecnia e Transportes da UFMG, Frederico Amaral e Silva. O aluno contribui em todas as fases do projeto, desde a revisão da literatura e modelagem das rodovias no Vissim, até a geração de modelos de tráfego. Como contrapartida, os resultados obtidos do projeto RDT serviram para o desenvolvimento de seu Mestrado, com defesa de dissertação agendada para 27/06/2019. Os resultados obtidos neste projeto irão culminar em possíveis publicações de impacto, especialmente em periódicos especializados, que serão submetidos para análise ainda em 2019.

O desenvolvimento do projeto, certamente, deverá contribuir para que futuras pesquisas nessa área possam continuar sendo desenvolvidas, fazendo com que o estado da técnica e da arte avance um pouco mais e, consequentemente, a sociedade, de alguma forma, ganhe com isso.

2 REVISÃO DA LITERATURA

Neste capítulo, são abordados aspectos importantes encontrados na literatura sobre a dinâmica das ultrapassagens, as características das zonas de ultrapassagens proibidas e os impactos de faixas adicionais de subida em rodovias de pista simples. Além disso, são discutidas as medidas de desempenho mais apropriadas para esse tipo de rodovia, inclusive dentro da nova metodologia que será preconizada pela 6ª edição do HCM (Washburn *et al.*, 2018).

2.1 Ultrapassagens em rodovias de pista simples

As características de uma rodovia de pista simples incluem a necessidade de realização de manobras de ultrapassagens quando um veículo mais rápido encontra um veículo mais lento em um determinado trajeto. Se a geometria viária não permite uma visibilidade suficiente para o tráfego no sentido oposto, os veículos mais rápidos não realizam manobras de ultrapassagens e eles tendem a desenvolver uma velocidade abaixo daquela que gostariam. Além disso, os diferentes níveis de desempenho dos veículos e dos usuários fazem com que os motoristas possuam velocidades desejadas de viagem diferentes. Quanto mais próximo da sua velocidade desejada os motoristas conseguem se manter em um dado segmento rodoviário, maior é o nível de conforto e de comodidade percebido por eles durante uma viagem, desde que eles não permaneçam atrás de veículos lentos, formando pelotões.

McLean (1989) analisa a dinâmica das manobras de ultrapassagens e aponta cinco fatores básicos que influenciam diretamente como elas acontecem, a saber:

- a) Tipo de veículo ultrapassado: os motoristas que ultrapassam respondem de acordo com os diferentes tipos de veículos a serem ultrapassados; assim, o comportamento de um motorista é diferente ao ultrapassar um caminhão ou ultrapassar um veículo leve;
- b) Velocidade do veículo ultrapassado: a velocidade do veículo a ser ultrapassado influencia a distância necessária para se realizar a manobra;

- c) Tipo de veículo que ultrapassa: o comportamento de um condutor em um veículo de alto desempenho é diferente quando se conduz um veículo de menor rendimento, como um caminhão, por exemplo;
- d) Necessidade de acelerar para realizar a ultrapassagem: se a ultrapassagem ocorre assim que o veículo mais veloz se depara com um veículo mais lento, é diferente de quando o veículo mais veloz reduz sua velocidade àquela do veículo mais lento, o que leva a uma necessidade de acelerar para realizar a ultrapassagem;
- e) Oportunidade de ultrapassagem: a oportunidade de ultrapassagem pode ser definida por fatores como a visibilidade para o veículo em sentido oposto, pela distância de visibilidade devido à geometria viária e pelo início de uma zona de ultrapassagem permitida.

Ao analisar o comportamento dos motoristas ao aceitar intervalos para realização de manobras de ultrapassagens, McLean (1989) indica que, de modo geral: (i) motoristas possuem boa interpretação da distância necessária para realizar a manobra, apesar de terem dificuldades em avaliar a velocidade do veículo em sentido oposto; (ii) há uma grande variabilidade na aceitação dos intervalos entre veículos pelos motoristas; (iii) a decisão de aceitar um intervalo para a ultrapassagem é conservadora e prudente; (iv) a aceitação do intervalo para ultrapassagem depende do tipo e da velocidade do veículo a ser ultrapassado, da distância de visibilidade ou da presença de veículo no sentido oposto e se é necessário acelerar para realizar a manobra; (v) o intervalo crítico para realização da manobra é baseado na distância do veículo oposto.

Outro aspecto importante para a realização das manobras de ultrapassagens é a possibilidade de um intervalo no fluxo de tráfego contrário que possibilite ao condutor realizar a manobra de ultrapassagem. Assim, quanto maior o fluxo em sentido oposto, menores serão as possibilidades de realizar ultrapassagens com segurança. Outra questão relevante é que ultrapassar um caminhão é uma manobra mais complexa que ultrapassar um veículo de passeio, pois os caminhões são mais longos e bloqueiam a visão ao redor. Isso implica que os motoristas demandam um intervalo entre veículos maior para realizar a manobra de ultrapassagem (McLean, 1989).

De acordo com o Manual de Projeto Geométrico da AASHTO (2001), o *Green Book*, a distância mínima de visibilidade (*DMV*) é a que permite o motorista realizar as manobras de ultrapassagens com segurança, havendo tempo hábil para ultrapassar o veículo que trafega em velocidade mais lenta, sem colidir com o veículo que vem em sentido contrário e com espaço suficiente para abortar a manobra, caso necessário. No Manual, é proposto um modelo para cálculo da distância mínima de visibilidade para ultrapassagens, conforme abaixo:

$$DMV = d_1 + d_2 + d_3 + d_4, (2.1)$$

em que d_1 é a distância percorrida, em metros, pelo automóvel durante a percepção e a reação do motorista da zona de ultrapassagem e a aceleração do automóvel para mudar de faixa de circulação e se posicionar na faixa esquerda para iniciar a manobra de ultrapassagem. A distância d_1 é dada por:

$$d_1 = 0.28t_1(u - m + \frac{at_1}{2}), (2.2)$$

em que t_1 é o tempo de percepção e reação em segundos; m é a diferença do veículo que está ultrapassando para o veículo que está mais lento, geralmente de 15 km/h (10 mi/h); a representa a aceleração do automóvel (m/s²); u significa a velocidade média do veículo que ultrapassa (km/h); d_2 é a distância que o veículo que realiza a ultrapassagem percorre na faixa esquerda, que é dado por:

$$d_2 = 0.28ut_2, (2.3)$$

em que t_2 é o tempo que o veículo que realiza a ultrapassagem percorre na faixa esquerda (s); u é a velocidade média do veículo que realiza a ultrapassagem (km/h); d_3 é a distância de segurança entre o veículo que realiza a ultrapassagem e o veículo que vem em sentido oposto no final da ultrapassagem, e vale entre 33 e 91 metros, de acordo com a velocidade de ultrapassagem; d_4 é a distância que o veículo em sentido oposto percorre após ser visto pelo veículo que realiza a ultrapassagem, e é dada dado por:

$$d_4 = \frac{2}{3}d_2 \tag{2.4}$$

A Figura 2.1 ilustra como ocorrem as ultrapassagens, considerando-se cada uma das variáveis consideradas para o cálculo da DMV de ultrapassagem. Outro aspecto importante que pode ser observado é que se o veículo, ao visualizar outro no sentido oposto, não tiver percorrido 1/3 d2, a manobra de ultrapassagem será abortada e o veículo retornará para sua posição na fila atrás do veículo lento. A AASTHO (2001) apresenta a correlação entre a distância para realizar a manobra e a velocidade dos veículos (Tabela 2.1).

Figura 2.1: Dinâmica da ultrapassagem em rodovias de pista simples (AASHTO, 2001)

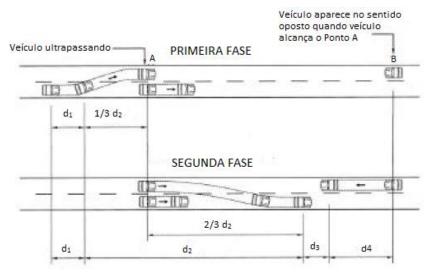
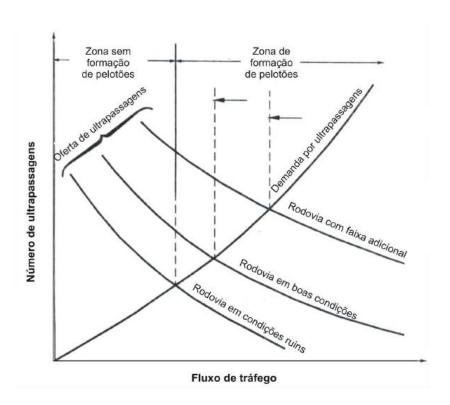


Tabela 2.1: Elementos para distância de ultrapassagem segura (ASSHTO, 2001)

Componente da ultrapassagem	Grupo de velocidade (km/h)					
	50 a 65	66 a 80	81 a 95	96 a 110		
	Velocidae	de média de ı	ıltrapassageı	m (km/h)		
	56,2	70,0	84,5	99,8		
Início da manobra:						
$a = \text{aceleração média (m/s}^2)$	2,25	2,30	2,37	2,41		
$t_1 = \text{tempo (s)}$	3,6	4,0	4,3	4,5		
d_1 = distância percorrida (m)	45	66	89	113		
Uso da faixa em sentido oposto:						
$t_2 = \text{tempo (s)}$	9,3	10,0	10,7	11,3		
d_2 = distância percorrida (m)	145	195	251	314		
Retorno para o sentido direcional:						
d_3 = distância percorrida (m)	30	55	75	90		
Veículo em sentido oposto:						
d_4 = distância percorrida (m)	97	130	168	209		
Distância percorrida total:						
$d_1 + d_2 + d_3 + d_4$ (m)	317	446	583	726		

Assim, a possibilidade de ultrapassagem guarda relação direta com a velocidade dos veículos na via, bem como com sua geometria, pois essas distâncias mínimas para ultrapassagens com segurança consideram que o condutor conseguirá visualizar toda a distância mínima sem a existência de obstáculos.

Taneka e Troutbrck (1998) propuseram a taxa de ultrapassagens como medida de desempenho para rodovias com baixo fluxo de veículos. Com o uso da simulação, foram obtidos valores típicos de rodovias norte americanas de baixo volume de tráfego, que foram utilizados para desenvolver um modelo de taxa de ultrapassagens. Foram obtidos headways entre 2 e 5 segundos, velocidade média de 60 km/h com desvio padrão de 9,6 km/h e adotado um fluxo diário de 300 veículos/dia com divisão direcional de 50% para cada sentido, pois esse fluxo foi considerado consistente com as rodovias de baixo fluxo norte americanas. Assim, chegaram à seguinte formulação para a taxa de ultrapassagens (*OR*), dada em ultrapassagens/km/h:


$$OR = k_o \frac{ADT^2}{\bar{v}}, \qquad (2.5)$$

em que ADT é o volume diário médio ($Average\ daily\ traffic$) bidirecional (veic/dia); k_o é uma constante relacionada ao coeficiente de variação de velocidades; e v é a velocidade média bidirecional.

Morral e Werner (1990) estudaram a demanda por ultrapassagens e propuseram uma medida de desempenho também denominada como taxa de ultrapassagens, que consiste na razão do número de ultrapassagens realizadas (AO) pelo número de ultrapassagens desejadas (DO). Há que se considerar que a DO aumenta quando: (i) a geometria da via se torna mais desfavorável (maiores aclives, por exemplo); (ii) for maior o percentual de veículos pesados (caminhões e ônibus) na corrente de tráfego; e (iii) for maior o número e a frequência de zonas de ultrapassagens proibidas. Quando a DO excede a AO, tem-se a formação de pelotões. Os autores demonstraram graficamente como se dá a formação de pelotões em função do volume de veículos, da possibilidade de realização de ultrapassagens e da qualidade da rodovia, conforme a Figura 2.2.

Figura 2.2: Funções de oferta e demanda de ultrapassagens para rodovias com diferentes oportunidades de ultrapassagens (Morral e Werner, 1990)

Com o uso de simulação de tráfego, procurou-se relacionar as ultrapassagens e o fluxo de tráfego para determinar qual é o efeito, no nível de serviço, do percentual de zonas de ultrapassagens proibidas em função da composição do tráfego e das características do relevo. Foi demonstrando que mais caminhões e veículos recreacionais na corrente de tráfego reduzem a taxa de ultrapassagens, em especial com baixos volumes de fluxo.

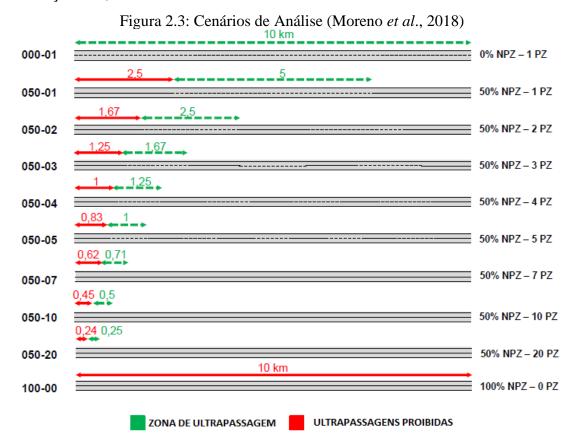
O efeito das zonas de ultrapassagens proibidas foi analisado com dois cenários, desenvolvidos em função dos padrões de projeto das rodovias do Oeste do Canadá: (i) percentual de 51,6% com zonas de ultrapassagens proibidas e sem faixas adicionais; e (ii) outro cenário com 47,2% de zonas de ultrapassagens proibidas, mas com 28,2% de faixas adicionais. Os resultados demonstraram que o segmento com faixa adicional possui uma relação AO/DO muito maior que nos segmentos em que não há zonas de ultrapassagens proibidas. Assim, esclarecem que o percentual de zonas de ultrapassagens proibidas não é um bom indicador, isoladamente, para avaliar o impacto das faixas adicionais no nível de serviço. A taxa de ultrapassagens também é sensível ao relevo da rodovia: quanto mais acidentado, maior a taxa, tanto para zonas de ultrapassagens quanto para segmentos com faixa adicional.

A taxa de ultrapassagens diminui quando o percentual de atrasos médio do tempo de viagem aumenta, indicando que as variações não são diretamente proporcionais, sendo que os motoristas tendem a sentir um maior desconforto com a formação de pelotões que com o atraso na viagem. Dessa forma, para uma melhor percepção sobre a qualidade de serviço, poderia ser utilizada a taxa de ultrapassagens como um dos indicadores do nível de serviço, em conjunto com outros indicadores já disponíveis na literatura (Morral e Werner, 1990). A viabilidade de se obter a taxa de ultrapassagens em campo não é trivial, especialmente o número de ultrapassagens desejadas (Bessa Jr., 2015).

Al-Kaisy *et al.* (2018) analisaram algumas medidas de desempenho, dentre elas a taxa de ultrapassagens, buscando nelas algumas características desejáveis, como: (i) percepção do usuário da rodovia; (ii) facilidade de obtenção; (iii) sensibilidade às condições da rodovia; (iv) compatibilidade com outros tipos de rodovias; (v) capacidade de descrever diferentes fluxos de tráfego; e (vi) capacidade de estar correlacionadas com aspectos de

segurança, econômicos, ambientais e de confiabilidade. Considerando-se esses aspectos, chegaram à conclusão de que a taxa de ultrapassagens apresenta qualitativamente um resultado pior que as outras medidas de desempenho que foram avaliadas. A percepção é que a taxa de ultrapassagens não reflete precisamente o que se espera em uma rodovia de pista simples, não representando o eventual desconforto ou a qualidade de um determinado segmento de rodovia.

Moreno *et al.* (2018) investigaram o impacto de diferentes níveis e distribuições de zonas de ultrapassagens proibidas, ao longo de um segmento de rodovia de pista simples, das duas medidas de desempenho utilizadas pelo HCM2010 para análise de rodovias de pista simples, a *ATS* e a *PTSF*. Além dessas medidas de desempenho, os pesquisadores analisaram ainda a porcentagem de veículos em pelotões (*PF*), utilizando, como *headway* crítico, os valores de 3 e 4 segundos. A *PF* é uma medida que representa a proporção de veículos trafegando com *headways* menores ou iguais a um determinado valor crítico, sendo utilizada como medida *proxy* para os casos em que não é possível obter a *PTSF*.


O objetivo do estudo foi avaliar o efeito de zonas de ultrapassagens proibidas para as condições de operação da rodovia, considerando que o ajuste proposto pelo HCM considera apenas o percentual de zonas de ultrapassagens proibidas, desconsiderando o comprimento e a distribuição das zonas de ultrapassagens proibidas ao longo do segmento. Além disso, questionam a efetividade das zonas de ultrapassagens muito curtas para a melhoria operacional da via.

O estudo consistiu na (i) obtenção de dados de comportamento dos motoristas na realização das ultrapassagens em rodovias de pistas simples espanholas; (ii) calibração do simulador de tráfego TWOPAS; (iii) criação de cenários de simulação variando-se o fluxo direcional, a divisão de tráfegos por sentido, o percentual de zonas de ultrapassagens proibidas e o comprimento dos segmentos de ultrapassagens permitidas; (iv) modelagem da *ATS* e do *PTSF* a partir das condições de tráfego e no comprimento da zona de ultrapassagem permitida; (v) avaliação do efeito do comprimento das zonas de ultrapassagens permitidas na *ATS* e na *PTSF* e, por fim, (vi) proposição de novos procedimentos para analisar as condições operacionais de rodovias espanholas.

Os pesquisadores obtiveram dados de tráfego em rodovias de pista simples espanholas com velocidade permitida de 100 km/h e com um volume diário médio (VDM) de 5.925 veículos. Foi observada a frequência e a dinâmica de ultrapassagens realizadas nos segmentos com o auxílio de filmadoras.

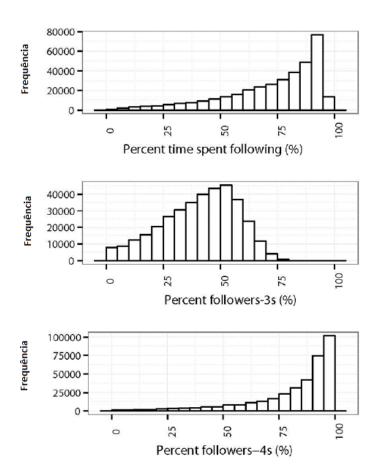
Foram modelados, no TWOPAS, correntes de tráfego com 0%, 50% e 100% de zona de ultrapassagens proibidas. Considerando o segundo cenário, foi realizada a distribuição de diferentes comprimentos para as zonas de ultrapassagens proibidas. As zonas de ultrapassagens permitidas foram modeladas com o comprimento de 250 m, 500 m, 714 m, 1.000 m, 1.250 m, 1670 m, 2.500 m e 5.000 m. Assim, conforme a Figura 2.3, foram modelados segmentos de 10 km de extensão, sem curvas horizontais e verticais e com inclinação de 0,5%.

As condições de tráfego foram modeladas com variações de divisão de fluxo direcional e sentido oposto conforme demonstrado na Tabela 2.2. Quanto ao volume de tráfego, foi modelado de 100 a 1.700 veic/h no sentido direcional e com cenários variando de 50 em

50 veic/h, sendo o sentido oposto limitado à 1.700 veic/h e o fluxo de tráfego bidirecional limitado a 3.200 veic/h. A composição do tráfego foi simulada com o percentual de veículos pesados de 0%, 10%, 20% e 30%.

Após a composição dos cenários, foram realizadas 15 simulações para cada condição de tráfego modelada. Na Tabela 2.2, é possível verificar os cenários resultantes das combinações das variáveis de análise da utilizadas na pesquisa.

Em relação às ultrapassagens, foi observado que quanto mais equilibrada for a divisão dos fluxos direcionais, bem como menores forem as zonas de ultrapassagens permitidas, menores são as quantidades de ultrapassagens realizadas, concluindo-se que a efetividade das zonas de ultrapassagens permitidas se estabiliza a partir de 1.100 m de comprimento. Assim, quando há uma divisão de fluxos direcional maior em um sentido que no sentido oposto, foi verificada uma maior quantidade de ultrapassagens, ao passo que, também, há um maior número de ultrapassagens quando as zonas de ultrapassagens permitidas são maiores. Ou seja, zonas de ultrapassagens muito curtas foram consideradas pouco efetivas. A Figura 2.4 mostra os resultados de *PF* e *PTSF* para um dos cenários analisados.


Tabela 2.2: Combinação dos cenários (Moreno et al., 2018)

Variável	Distribuição das zonas ultrapassagem	de	% de veículos pesados	Divisão do fluxo de veículos				
Valores	0% NPZ, 1. ZA (000-01) 50% NPZ, 1 ZA (050-01) 50% NPZ, 2 ZA (050-02) 50% NPZ, 3 ZA (050-03) 50% NPZ, 4 ZA (050-04) 50% NPZ, 5 ZA (050-05) 50% NPZ, 7 ZA (050-07) 50% NPZ, 10 ZA (050-10) 50% NPZ, 20 ZA (050-20) 100% NPZ, 0 ZA (100-00)		0 10 20 30	20/80 30/70 40/60 50/50 60/40 70/30 80/20	Entre 100 e 1.700 incrementos de 50 em 50 veículos por hora			
Subtotal	10		2	7	32			
Total	249.150 simulações executadas válidas							

NPZ: Zona de ultrapassagem proibida; ZA: Zona de ultrapassagem permitida

Figura 2.4: Distribuição do *PTSF* e do *PF* - Cenário 000-01 (Moreno *et al*, 2018)

Entre as recomendações desse estudo, está a indicação de que outras medidas de desempenho devem ser estudadas mais a fundo, especialmente aquelas baseadas na *PF*, como a densidade de veículos em pelotões (*follower density*), que possui a seguinte formulação:

$$FD = \frac{PF}{100} \cdot \frac{q}{ATS} \,, \tag{2.6}$$

em que q é o fluxo de tráfego (veic/h).

Mwesige *et al.* (2017) avaliaram o efeito do comprimento e a segurança das zonas de ultrapassagens em relação ao percentual das manobras de ultrapassagens que são concluídas após o final do trecho em que a ultrapassagem é permitida, com dados coletados em rodovias de pista simples em Uganda. Nesse estudo, foi estimada a

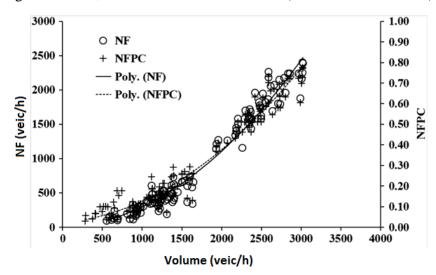
probabilidade de uma manobra de ultrapassagem terminar após o segmento em que a ultrapassagem é permitida, observando-se o comprimento da zona de ultrapassagens, a distância percorrida até o início da manobra, a velocidade dos veículos envolvidos na ultrapassagem e o tipo de veículo que é ultrapassado.

Quando a zona de ultrapassagem é menor que 400 m, é maior a chance de as ultrapassagens terminarem após o término do trecho permitido. Para melhorar a eficiência operacional, foi recomendado que as zonas de ultrapassagem tenham pelo menos 500 m de comprimento quando o fluxo for predominante de carros e caminhões pequenos. Quando a corrente de tráfego conter caminhões maiores, a zona de ultrapassagens deve ser de, no mínimo, 600 m, com os 300 m finais reservados para a conclusão das manobras.

Dessa forma, considerando a complexidade de avaliar o desempenho do fluxo de veículos em uma rodovia de pista simples, em especial em observar o *PTSF*, Penmetsa *et al.* (2015) analisaram algumas das medidas de desempenho na literatura que fossem adequadas para caracterizar a operação em rodovias de pista simples. Os autores propuseram o uso do número de veículos em pelotões (*number of followers - NF*) e a relação entre o número de veículos em pelotões e a capacidade (*number of followers as a proportion of capacity - NFPC*).

O *NF* representa a quantidade de *headways* menores que 2,6 segundos, que tem a vantagem de ser facilmente obtido em campo. A expectativa com essa medida de desempenho é que, à medida que o fluxo de tráfego aumenta, o número de veículos trafegando em intervalos menores que 2,6 segundos aumentam proporcionalmente. Entretanto, a *NF*, isoladamente, pode não representar os segmentos em que haja congestionamento, pois não está correlacionada com a capacidade da rodovia, devendo ser combinado com outras medidas de desempenho.

Assim, os autores propõem uma combinação entre o *NF* e a capacidade da rodovia, dando origem ao *NFPC*, que a partir de uma função quadrática apresenta a melhor correlação com o fluxo. Essa conclusão foi possível a partir de dados de tráfego obtidos em rodovias


da Índia, com as características de pista simples e com o tráfego composto por diversos tipos de veículos.

A Equação 2.7 mostra a formulação do NFPC, que apresentou um coeficiente de correlação R^2 de 0,98 com o fluxo de tráfego direcional (q_d) . O NFPC também apresentou uma grande correlação com a PF. A Equação 2.8 demonstra a relação entre a PF e o NFPC, que possui uma correlação R^2 de 0,90 para os dados utilizados na pesquisa. Os autores também propuseram critérios para determinação do nível de serviço a partir do NFPC e compararam com o critério do HCM 2010, como demonstrado na Tabela 2.3.

$$NFPC = 9,36 \cdot 10^{-6} + 6,04 \cdot 10^{-5} \cdot q_d^2, \qquad (2.7)$$

$$PF = 92,817 \cdot (NFPC)^{0.5229} , \qquad (2.8)$$

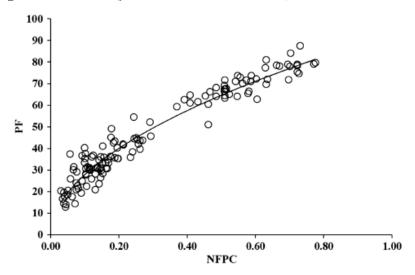


Figura 2.6: Correlação entre o PF e o NFPC (Penmetsa et al., 2015)

Tabela 2.3: Valores propostos para Nível de Serviço Baseado no *NFPC* (Penmetsa *et al*, 2015)

Nível de serviço	PTSF (HCM 2010)	NFPC
A	≤ 35	≤ 0,15
В	> 35-50	> 0,15-0,31
C	>50-65	>0,31-0,51
D	>65-80	>0,51-0,75
E	>80	>0,75

2.2 Faixa adicional de subida

A liberdade e a segurança operacional em rodovias de pista simples podem ser prejudicadas caso existam rampas acentuadas e longas que provoquem uma brusca redução da velocidade da corrente de tráfego, especialmente quando há veículos pesados nos segmentos com essas características. Dessa forma, haverá a formação de pelotões e o aumento do atraso médio dos veículos, se o fluxo de veículos for alto (AASHTO, 2001).

As faixas adicionais de subida consistem em uma terceira faixa de tráfego, complementar, implantada nos segmentos com rampa de subida acentuadas para o uso de veículos pesados e que tem a velocidade de tráfego significativamente reduzida nesse tipo de trecho (Yaqin. *et al.*, 2009). O objetivo é facilitar o tráfego dos veículos mais rápidos, ao

permitir que sejam realizadas as ultrapassagens com segurança e rapidez, sem usar a faixa no sentido oposto, reduzindo o tempo total de viagem e melhorando o nível de serviço no segmento. A faixa adicional de subida resultará em melhor qualidade operacional da via quando for dedicada para os veículos lentos, de forma que os veículos trafegando em velocidades maiores possam ultrapassá-los em segurança e sem utilizar a pista em sentido oposto (AASHTO, 2001).

O DNIT (2007) indica a implantação de faixas adicionais de subida com o objetivo de aumentar a capacidade de tráfego da rodovia. Além disso, apesar de representarem a necessidade de investimentos em determinado segmento de uma rodovia, as faixas adicionais possuem menor impacto ambiental e um menor custo de implantação em relação às obras necessárias para duplicação de um segmento já existente ou implantação de uma rodovia duplicada (Melo *et al.*, 2003).

Como a implantação das faixas adicionais pode representar um alto investimento, em rodovias de fluxo baixo pode não ser economicamente justificável ainda que o aclive do segmento seja muito acentuado, pois poucos veículos terão a sua viagem atrasada. Assim, a AASHTO (2001) propõe a combinação de três critérios para a decisão de construção da faixa adicional de subida, além das condições de segurança do tráfego, a saber: (i) fluxo de veículos no aclive superior a 200 veículos por hora; (ii) fluxo de caminhões superior a 20 veic/h; e (iii) existência de uma das seguintes condições: redução de 15 km/h ou mais na velocidade esperada de um caminhão pesado, ou nível de serviço E ou F no segmento (de acordo com o HCM), ou redução de dois ou mais níveis de serviço em comparação ao segmento imediatamente anterior de acordo com a avaliação do HCM.

A localização das faixas adicionais de subida depende da velocidade com que os caminhões se aproximam do aclive e das restrições da distância de visibilidade. Onde não há restrições de visibilidade, a faixa adicional pode iniciar após percorrido um trecho do aclive, pois a velocidade dos veículos pesados somente impactará os veículos mais rápidos após percorrer parte do aclive, devido à inércia (AASHTO, 2001).

As condições ideais das faixas adicionais incluem: (i) término após o topo do aclive, de forma que os veículos pesados possam acelerar para a velocidade anterior à subida; (ii) o retorno dos caminhões para a faixa normal para que não impacte a corrente de tráfego; (iii) ao final da faixa adicional, a distância de visibilidade para que permita a realização de ultrapassagens usando-se da faixa em sentido oposto; (iv) o "taper" ao final da faixa adicional de modo que permita o retorno em segurança do caminhão à faixa normal; (v) a largura deve ser a mesma das faixas normais; (vi) deve ser possível identificar imediatamente o início da faixa adicional; (vii) a sinalização horizontal da via deve proibir a realização de manobras de ultrapassagens no sentido oposto; (viii) a sinalização vertical da via deve ordenar que os caminhões trafeguem pela faixa adicional durante o aclive; e (ix) a sinalização deve indicar a proximidade do fim da faixa adicional (AASHTO, 2001).

Como os parâmetros apresentados pela AASHTO são baseados nas condições das rodovias norte-americanas (características dos veículos, condutores, entre outros fatores), Melo e Setti (2003) propuseram uma adaptação dos critérios previstos pela AASHTO para a implantação de faixa adicional de subida em rodovias de pista simples brasileira. Foram realizadas mais de 20.000 simulações de tráfego com o TRARR para analisar o impacto no ganho de velocidade média, redução do tempo de viagem e da porcentagem de tempo viajando em pelotões.

Em contrapartida, foi ponderado o custo do investimento composto pela construção e manutenção da faixa adicional. Foi realizada uma análise de custo benefício da implantação da faixa adicional e recomendados os fluxos mínimos que justificam a construção de uma faixa adicional. Os tipos de veículos adotados para as simulações foram os mais comumente encontrados no estado de São Paulo, onde os dados foram obtidos. Ao final da análise de custo e benefício, foram apresentados os fluxos mínimos para a implantação de faixa adicional em aclives, mostrados na Tabela 2.4 (Melo e Setti, 2003).

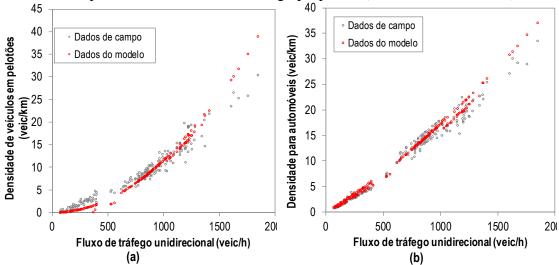
Tabela 2.4: Fluxos mínimos, em veic/h, na hora pico e no sentido ascendente, que justificam a implantação de faixa adicional em aclives (Melo e Setti, 2003)

Rampa	Comprimento			ntagem d			<u> </u>
(%)	(m)	10	20	25	30	35	40
	500	490	470	430	390	410	420
2	1000	480	450	410	375	395	405
3	1500	470	430	390	350	370	390
	2000	450	410	370	340	360	375
	500	460	440	420	380	390	395
4	1000	440	420	400	365	375	380
4	1500	435	400	380	345	350	365
	2000	400	380	360	330	340	350
	500	420	410	400	360	370	370
5	1000	400	375	350	340	345	350
3	1500	400	380	360	340	345	350
	2000	360	340	320	300	305	310
	500	400	370	360	350	360	370
6	1000	370	340	340	320	330	350
U	1500	360	340	320	305	315	340
	2000	330	310	300	290	300	330
	500	370	340	320	315	315	320
7	1000	340	300	290	280	290	300
,	1500	330	300	290	270	280	290
	2000	300	275	265	260	275	280
	500	310	290	270	250	255	260
8	1000	300	280	260	250	255	260
o	1500	300	280	260	240	255	270
	2000	280	265	250	230	235	245

Bessa Jr. e Setti (2018) desenvolveram um modelo de tráfego para avaliar o impacto das faixas adicionais em determinadas medidas de desempenho. No caso da densidade de veículos em pelotões para segmentos com faixas adicionais ($FDpl_d$), em veic/km, ela deve ser obtida em função do comprimento da faixa adicional (L), dada em km, e da densidade de veículos em pelotões para trechos sem faixa adicional (FD_d), como mostra a seguinte formulação:

$$FDpl_d = FD_d - 0,000580 L$$
, (2.6)

Os modelos foram obtidos a partir do simulador de tráfego CORSIM, calibrados a partir de um Algoritmo Genético (AG) e de dados de tráfego de rodovias coletados no estado de São Paulo e de Minas Gerais. Dentre as medidas de desempenho analisadas, estão a densidade de veículos em pelotões (*FD*) – definida pela Equação 2.6 – e a densidade para



automóveis ($D_{d,car}$) – como mostrado na Equação 2.7 – consideradas mais indicadas para calcular o nível de serviço. A Figura 2.7 apresenta comparações de FD e $D_{d,car}$ obtidos pelos modelos propostos e obtidos em campo.

$$D_{d,car} = \frac{q_d}{ATS_{d,car}},\tag{2.7}$$

em que q_d é o fluxo de tráfego direcional (veic/h); e $ATS_{d,car}$ é a velocidade média de viagem dos automóveis na direção analisada (km/h).

Figura 2.7: Densidade de veículos em pelotões (a) e densidade para automóveis (b) obtidas em campo e com os modelos de tráfego propostos (Bessa Jr. e Setti, 2018)

A FD, especificamente, surge como uma medida de desempenho adequada para calcular o nível de serviço em rodovias de pista simples, pois é de fácil obtenção e representa bem as condições da rodovia, sendo também capaz de representar a percepção do usuário e a compatibilidade com outros tipos de rodovias. Esse resultado é corroborado por outras pesquisas (Al-Kaisy et al., 2018; Bessa Jr. e Setti, 2018) e pelos estudos que estão sendo conduzidos para desenvolver o novo método do HCM (Washburn et al., 2018), como mostra a seção a seguir.

2.3 Highway Capacity Manual 2016

O TRB publicou, no ano de 2016, o novo HCM. Contudo, ainda não foi disponibilizado o novo capítulo referente às rodovias de pistas simples. Foi apresentado pela *National Cooperative Highway Research Program - NCHRP* um relatório que indica como será esse novo método. O TRB buscou escolher medidas de desempenho que possam refletir a percepção dos motoristas em relação à qualidade do tráfego, de modo que seja facilmente observada em campo, compatível com os outros tipos de rodovias e que seja capaz de descrever tanto as situações de congestionamento quanto as condições de fluxo não congestionado (Washburn *et al.*, 2018).

Assim, a proposta do novo método do HCM inclui a categorização em apenas duas classes de rodovias de pista simples, e não mais em três. A nova categorização é de entendimento mais fácil e objetivo, pois usa o critério de velocidade máxima regulamentar na rodovia. A primeira classe é chamada de rodovias de velocidade elevada (*Higher-Speed Highways*), cuja velocidade permitida deve ser maior ou igual a 80 km/h. A segunda classe é chamada de rodovias de baixa velocidade (*Lower-Speed Highways*) e tem como característica a velocidade regulamentar menor que 80 km/h. Nas rodovias de velocidade alta, a velocidade de tráfego e os atrasos decorrentes das zonas de ultrapassagens proibidas são fatores importantes para os motoristas. O que é diferente nas rodovias de baixa velocidade, em que, geralmente, são ligações internas das cidades e em regiões turísticas, apresentando poucas oportunidades de ultrapassagens, fazendo com que os motoristas aceitem velocidades menores.

A Washburn *et al.* (2018) afirmam que, para a determinação do nível de serviço nas zonas de ultrapassagens proibidas, o fator crítico para a qualidade do nível de serviço é o desempenho e o percentual de veículos pesados no segmento. Os segmentos em que a ultrapassagem é permitida, mas que efetivamente as ultrapassagens não acontecem por motivos diferentes que o fluxo no sentido oposto, devem ser avaliados como uma zona de ultrapassagem proibida, sendo classificada como segmento com restrições para ultrapassagens. Nesse tipo de segmento, a qualidade do tráfego se dá em função das seguintes características:

- Análise do fluxo direcional;
- Percentual de veículos pesados na corrente de tráfego;
- Alinhamento horizontal e vertical do segmento; e
- Comprimento do segmento.

Caso a faixa adicional seja muito curta, o HCM 6 não considera como uma faixa adicional e sim como uma saída da rodovia. A efetividade de uma faixa adicional de subida para melhoria das condições de tráfego depende das seguintes características:

- Análise do fluxo direcional;
- Percentual de veículos pesados na corrente de tráfego;
- Alinhamento horizontal e vertical do segmento; e
- Comprimento da faixa adicional de subida.

Washburn *et al.* (2018) consideram como veículos pesados aqueles que possuem mais de quatro rodas em contato com o relevo durante a operação regular, abrangendo caminhões, ônibus e veículos recreacionais, e são classificados em pequeno, médio ou de grande porte, de acordo com critérios do Departamento de Transportes Norte Americano (*U.S. DOT*).

O HCM 6 propõe cinco classes de alinhamento vertical em função na redução da velocidade de fluxo livre dos veículos pesados, devido a limitação na capacidade de aceleração desses veículos. A Classe 1 corresponde a um impacto baixo nas condições de tráfego, que vai aumentando até a Classe 5, que apresenta um grande impacto na velocidade de tráfego em função dos veículos pesados. Da mesma forma, o alinhamento horizontal é classificado em função do raio e da superelevação das curvas e o impacto que geram nas condições de tráfego dos veículos pesados.

A nova medida de desempenho recomendada pelo HCM 6 é a densidade de veículos em pelotões (*FD*), que demonstra a proximidade dos veículos, refletindo as oportunidades de realização de manobras de ultrapassagens e o desconforto dos motoristas ao trafegarem em pelotões. A Tabela 2.5: Nível de Serviço HCM 6 (Washburn *et al.*, 2018) demonstra os critérios para a classificação do nível de serviço para os dois tipos de rodovias.

Nível de Serviço	Serviço <u>Densidade de veículos em pelotões (veic/km/faixa)</u>							
	Rodovias de alta velocidade Velocidade permitida ≥ 80km/h	Rodovias de baixa velocidade Velocidade permitida < 80km/h						
A	≤ 3,2	≤ 4						
В	> 3,2 - 6,4	> 4 - 8						
С	>6,4 - 12,8	> 8 – 16						
D	> 12,8 - 19,2	> 16 – 24						
E	>19,2	> 24						

O melhor nível de serviço é o A, que pressupõe que os motoristas conseguem trafegar próximo à velocidade limite da via, e gradativamente há um aumento da densidade, até o no nível E, em que os motoristas já começam a trafegar em pelotões, refletindo em uma FD mais elevada. Após o nível E, considera-se que a rodovia está operando com fluxo de veículos acima da capacidade de tráfego. O cálculo da FD é dado como demonstrado na equação, levando em conta que o fluxo de tráfego v_d é dado em cpe/h:

$$FD = \frac{PF}{100} \cdot \frac{v_d}{ATS} \,, \tag{2.8}$$

em que PF é a porcentagem de veículos em pelotão na direção de análise; v_d é o fluxo de tráfego na direção de análise (cpe/h); e ATS é a velocidade média no sentido da análise (km/h).

O cálculo da *FD* para obter o nível de serviço é realizado em várias etapas que incluem a a realização de ajustes para condições não básicas. Essas condições básicas são: (i) possibilidade de realização de manobras de ultrapassagens durante todo o trajeto; (ii) largura da faixa de rolamento maior ou igual a 3,6 m; (iii) largura do acostamento maior ou igual a 1,8 m; (iv) corrente de tráfego composta somente por automóveis; (v) relevo plano. A seguir, serão apresentadas, em linhas gerais, as etapas propostas pelo HCM 6 para se obter o nível de serviço, para os casos em que se tem as zonas de ultrapassagens proibidas ou faixas adicionais de subida.

A primeira etapa do método consiste em identificar o segmento de análise para que se possam determinar quais ajustes são necessários para o cálculo da FD, pois os fatores de ajustes são diferentes para cada tipo de geometria e de restrição observadas na rodovia. A Tabela 2.6 ilustra os comprimentos dos segmentos recomendados para o cálculo da velocidade média e da PF. O método considera que as faixas adicionais com comprimento superior a 4,8 km devem ser analisadas como rodovias de pista dupla e menores que 800 m devem ser considerados como segmentos com restrições para as manobras de ultrapassagens.

Tabela 2.6: Comprimentos mínimo e máximo dos segmentos para cálculo da velocidade média e do *PF* no segmento (Washburn *et al.*, 2018)

Classe Vertical	Zona de ultrapass	agens proibidas	Faixa adicional de subida		
	Mínimo (km) Máximo (km)		Mínimo (km)	Máximo (km)	
1	0,4	4,8	0,8	4,8	
2	0,4	4,8	0,8	4,8	
3	0,4	1,8	0,8	1,8	
4	0,8	4,8	0,8	4,8	
5	0,8	4,8	0,8	4,8	

Após identificar o tipo de segmento de análise, deve-se, no caso de faixa adicional de subida, verificar se o fluxo no segmento à jusante ainda sob efeito da faixa adicional não excede o limite de 10% do fluxo do segmento de análise. Caso contrário e o fluxo no segmento a jusante sob efeito de faixa adicional seja maior que 10% do fluxo de análise, é sugerido o uso de microssimulação para obter o efeito da faixa adicional. O fluxo de tráfego deve ser determinado conforme a equação:

$$v_i = \frac{V_i}{FHP}, \tag{2.9}$$

em que v_i é o fluxo de tráfego direcional de pico (cpe/h); V_i representa a demanda direcional (veic/h); e FHP é o Fator de Hora Pico.

Na sequência, deve-se determinar, com base na Tabela 2.7, a Classe do Alinhamento Vertical, que é necessária para o cálculo da velocidade de fluxo livre (*FFS*), da *ATS* e da *PF*.

Tabela 2.7: Classes de Alinhamento Vertical (Descidas entre parênteses) (Washburn *et al.*, 2018)

Comprimento	% de inclinação vertical									
do Segmento	≤ 1	>1≤2	$>$ 2 \leq 3	> 3 \le 4	> 4 ≤ 5	>5≤6	> 6 ≤ 7	>7≤8	>8 \le 9	> 9
(km)										
≤ 0,16	1(1)	1(1)	1(1)	1(1)	1(1)	1(1)	1(1)	1(1)	2(2)	2(2)
$> 0.16 \le 0.32$	1(1)	1(1)	1(1)	1(1)	2(1)	2(2)	2(2)	2(2)	3(3)	3(3)
$> 0.32 \le 0.48$	1(1)	1(1)	1(1)	2(1)	2(2)	3(2)	3(3)	3(3)	4(4)	5(5)
$> 0,48 \le 0,64$	1(1)	1(1)	2(1)	2(2)	3(2)	3(3)	4(4)	4(4)	5(5)	5(5)
$> 0.64 \le 0.80$	1(1)	1(1)	2(1)	2(2)	3(2)	4(3)	5(4)	5(5)	5(5)	5(5)
$> 0.80 \le 0.96$	1(1)	1(1)	2(1)	3(2)	3(3)	4(4)	5(5)	5(5)	5(5)	5(5)
$> 0.96 \le 1.12$	1(1)	1(1)	2(1)	3(2)	4(3)	4(4)	5(5)	5(5)	5(5)	5(5)
$> 1,12 \le 1,28$	1(1)	1(1)	2(1)	3(3)	4(4)	5(4)	5(5)	5(5)	5(5)	5(5)
$> 1,28 \le 1,44$	1(1)	1(1)	2(1)	3(3)	4(4)	5(5)	5(5)	5(5)	5(5)	5(5)
$> 1,44 \le 1,60$	1(1)	1(1)	2(2)	3(3)	4(4)	5(5)	5(5)	5(5)	5(5)	5(5)
$> 1,60 \le 1,76$	1(1)	1(1)	2(2)	3(3)	4(4)	5(5)	5(5)	5(5)	5(5)	5(5)
> 1,76	1(1)	1(1)	2(2)	4(4)	4(4)	5(5)	5(5)	5(5))	5(5)	5(5)

Então, passe-se a analisar a velocidade de fluxo livre (*FFS*), devendo ser determinada diretamente do campo ou pelo cálculo demonstrado a seguir:

$$FFS = BFFS - a(HV\%) - f_{LS} - f_a, \qquad (2.10)$$

em que BFFS é a velocidade de fluxo livre base (km/h), calculada pelo produto da velocidade máxima regulamentada da via por 1,14; HV% é o percentual de veículos pesados na direção de análise; f_{LS} representa o ajuste para largura da faixa de rolamento; f_a é o ajuste para a densidade de acessos.

O parâmetro a dado por:

$$a = \max \left[0.0333, \ a_0 + a_1 BFFS + a_2 L + \max(0, \ a_3 + a_4 BFFS + a_5 L) \frac{v_o}{1000} \right], \quad (2.11)$$

em que L representa o comprimento do segmento de análise (km); v_o é o fluxo no sentido oposto em veic/h, adotando-se o valor de 1.500 nas zonas com ultrapassagens proibidas e 0 nos segmentos com faixa adicional; e a_0 a a_5 são os coeficientes de ajuste, conforme Tabela 2.8.

.

Tabela 2.8: Coeficientes de ajuste para cálculo da FFS (Washburn et al., 2018)

Classe Vertical	a ₀	<i>a</i> ₁	a_2	аз	<i>a</i> 4	a 5
1	0,00000	0,00000	0,00000	0,00000	0,00000	0,0000
2	-0,45036	0,00814	0,01543	0,01358	0,00000	0,00000
3	-0,29591	0,00743	0,00000	0,01246	0,00000	0,00000
4	-0,40902	0,00975	0,00767	-0,18363	0,00423	0,00000
5	-0,38360	0,01074	0,01945	-0,69848	0,01069	0,12700

A Velocidade Média (*ATS*) no segmento de análise, quando o fluxo é inferior a 100 veic/h, será igual à *FFS*. Para os segmentos em que o fluxo é maior ou igual a 100 veic/h, deverá ser calculado conforme a Equação 2.15.

$$ATS = FFS - m \left(\frac{v_d}{1000} - 0.1 \right)^p, \qquad (2.12)$$

em que v_d é o fluxo na direção de análise; m é o coeficiente de inclinação; e p representa o coeficiente de potência. O cálculo do Coeficiente de inclinação m se dá de acordo com a Equação 2.16 e as etapas descritas a seguir.

$$m = \max \left[b_5, \ b_0 + b_1 FFS + b_2 \sqrt{\frac{v_o}{1000}} + \max(0, \ b_3) \sqrt{L} + \max(0, \ b_4) \sqrt{HV\%} \right], \tag{2.13}$$

em que b_0 a b_5 são os coeficientes apresentados na Tabela 2.9 para segmentos com restrição de ultrapassagens.

Tabela 2.9: Coeficientes para o alinhamento vertical das zonas com restrições de ultrapassagens (Washburn *et al.*, 2018)

Classe Vertical	\boldsymbol{b}_{θ}	b_1	b_2	b 3	b 4	b 5
1	0,0558	0,0542	0,3278	0,1029	0,000	0,0000
2	5,7280	-0,0809	0,7404	Equação 2.14	Equação 2.15	3,1155
3	9,3079	-0,1706	1,1292	Equação 2.14	Equação 2.15	3,1155
4	9,0115	-0,1994	1,8252	Equação 2.14	Equação 2.15	3,2685
5	23,914	-0,6925	1,9473	Equação 2.14	Equação 2.15	3,5115

Tabela 2.10: Coeficientes para o alinhamento vertical para Faixa Adicional de Subida (Washburn *et al.*, 2018)

	(** ******* ****** ****** ************									
Classe Vertical	$\boldsymbol{b}_{\boldsymbol{\theta}}$	b_1	b_2	b 3	b_4	b 5				
1	-1,1379	0,0941	0,0000	Equação 2.17	Equação 2.18	0,0000				
2	-2,0688	0,1053	0,0000	Equação 2.17	Equação 2.18	0,0000				
3	-0,5074	0,0935	0,0000	Equação 2.17	Equação 2.18	0,0000				
4	8,0354	-0,0860	0,0000	Equação 2.17	Equação 2.18	4,1900				
5	7,0991	-0,3535	0,0000	Equação 2.17	Equação 2.18	4,8700				

$$b_3 = c_0 + c_1 \sqrt{L} + c_2 FFS + c_3 FFS \sqrt{L} , \qquad (2.14)$$

em que b_3 é o coeficiente para o alinhamento vertical; c_0 a c_3 representam os coeficientes para o cálculo de b_3 , conforme a Tabela 2.11 para os segmentos com ultrapassagens proibidas;

Tabela 2.11: Coeficientes para cálculo do b_3 em zonas de ultrapassagens proibidas (Washburn et al., 2018)

Classe Vertical	C0	c 1	c 2	c 3			
1	0,1029	0,0000	0,0000	0,0000			
2	-13,8036	0,0000	0,2446	0,000			
3	-11,9703	0,0000	0,2542	0,000			
4	-12,5113	0,0000	0,2656	0,000			
5	-14,8961	0,0000	0,4370	0,0000			

Tabela 2.12: Coeficientes para cálculo do b_3 em segmentos com faixa adicional de subida (Washburn *et al.* 2018)

Classe	c_{θ}	c_1	c_2	c ₃	
Vertical					
1	0,0000	0,2667	0,0000	0,0000	
2	0,000	0,4479	0,0000	0,0000	
3	0,000	0,0000	0,0000	0,0000	
4	-27,1244	11,5196	0,4681	-0,1873	
5	-45,3391	17,3749	1,0587	-0,3729	

$$b_4 = d_0 + d_1 \sqrt{HV\%} + d_2 FFS + d_3 FFS \sqrt{HV\%}$$
, (2.15)

em que b_4 é o coeficiente para porcentagem de veículos pesados no modelo de fluxo velocidade; e d_0 a d_3 são os coeficientes para o ajuste de veículos pesados, conforme a Tabela 2.13 para segmentos com ultrapassagens proibidas e Tabela 2.14 para os segmentos com faixa adicional de subida.

Tabela 2.13: Coeficientes d_0 a d_3 para os segmentos de ultrapassagem proibida (Washburn *et al.* 2018)

Classe Vertical	d_{θ}	d_0 d_1		d 3	
1	0,0000	0,0000	0,0000	0,0000	
2	-1,7765	0,0000	0,0392	0,0000	
3	-3,5550	0,0000	0,0826	0,0000	
4	-5,7775	0,0000	0,1373	0,0000	
5	-18,2910	2,3875	0,4494	-0,0520	

Tabela 2.14: Coeficientes d_0 a d_3 para os segmentos de faixa adicional de subida (Washburn et al., 2018)

Classe Vertical	d_{θ}	d_1	d_2	d_3
1	0,0000	0,1252	0,0000	0,0000
2	0,000	0,1631	0,0000	0,0000
3	0,000	-0,2201	0,0000	0,0072
4	0,000	-0,7506	0,0000	0,0193
5	3,8457	-0,9112	0,0000	0,0170

Passa-se então para o cálculo do coeficiente de potência p, que se dá pela equação:

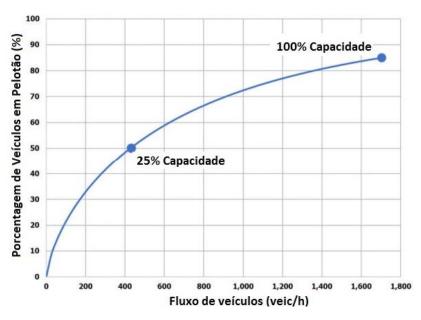
$$p = \max \left[f_8, f_0 + f_1 FFS + f_2 L + f_3 \frac{v_0}{1000} + f_4 \sqrt{\frac{v_0}{1000}} + f_5 HV \% \right], (2.16)$$

em que f_0 a f_8 são os coeficientes para o modelo de potência, sendo demonstrado para os segmentos com zona de ultrapassagens proibidas na Tabela 2.15 e 2.16 para os segmentos com faixa adicional de subida na Tabela 2.16.

Tabela 2.15: Coeficientes para o cálculo do modelo de potência em zonas de ultrapassagens proibidas (Washburn *et al.*, 2018)

Classe	f_{θ}	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8
Vertical									
1	0,67576	0,00000	0,00000	0,12060	-0,35919	0,00000	0,00000	0,00000	0,0000
2	0,34524	0,00591	0,02031	0,14911	-0,43784	-0,00296	0,02956	0,00000	0,41622
3	0,17291	0,00917	0,05698	0,27734	-0,61893	-0,00918	0,09184	0,00000	0,41622
4	0,67689	0,00534	-0,13037	0,25699	-0,68495	-0,00709	0,07087	0,00000	0,33950
5	1,13262	0,00000	-0,26367	0,18811	-0,64304	-0,00867	0,00867	0,00000	0,30590

Tabela 2.16: Coeficientes para o cálculo do modelo de potência com faixa adicional de subida (Washburn *et al.* 2018)


			(// asirc	carri et ett.	, =010)				
Classe Vertical	f_{θ}	f_{I}	f_2	f_3	f_4	f_5	f_6	f_7	f_8
v ci ticai									
1	0,91793	-0,00557	0,36862	0,00000	0,00000	0,00611	0,00000	-0,00418	0,00000
2	0,65105	0,00000	0,34931	0,00000	0,00000	0,00722	0,00000	-0,00391	0,00000
3	0,40117	0,00000	0,68633	0,00000	0,00000	0,02350	0,00000	-0,02088	0,00000
4	1,13282	-0,00798	0,35425	0,00000	0,00000	0,01521	0,00000	-0,00987	0,00000
5	1,12077	-0,00550	0,25431	0,00000	0,00000	0,01269	0,00000	-0,01053	0,00000

A próxima etapa do método consiste no cálculo da porcentagem de veículos em pelotões (*PF*) para a capacidade da rodovia, com o uso da equação:

$$PF = 100 \cdot \left[1 - e^{\left(m \cdot \left\{ \frac{v_d}{1000} \right\}^p \right)} \right], \tag{2.17}$$

Entretanto, o método recomenda que, para chegar ao *m* e *p* específicos para o cálculo do *PF*, deve-se calcular de modo que a curva exponencial encontre dois pontos específicos entre a capacidade do segmento e um fluxo menor que o fluxo que se pretende analisar. O exemplo trazido pelo manual é utilizar o fluxo de 25% da capacidade e o fluxo na capacidade para, com o uso da Equação 2.18 e Equação 2.19, chegar se ao *m* e *p* e, por fim, calcular o *PF*, conforme a Figura Figura 2.8.

Figura 2.8: Curva exponencial para dois pontos do PF (Washburn et al., 2018)

$$PF_{cap} = b_o + b_1 L + b_2 \sqrt{L} + b_3 FFS + b_4 \sqrt{FFS} + b_5 HV\% + b_6 FFS \frac{v_o}{1000} + b_7 \sqrt{\frac{v_o}{1000}}$$
(2.18)

em que *b*₀ *a b*₇ são coeficientes apresentados na Tabela 2.17.

Tabela 2.17: Coeficientes b para o cálculo da PF_{cap} (Washburn $et\ al., 2018$)

Classe Vertical	$\boldsymbol{b}_{\boldsymbol{\theta}}$	b 1	b_2	b 3	b 4	b 5	b_6	b 7
1	37,68080	3,05089	-7,90866	-0,94321	13,64266	-0,00050	-0,5500	7,1376
2	58,21104	5,73387	-13,66293	-0,66126	9,08575	-0,00950	-0,03602	7,1462
3	113,20439	10,01778	-18,90000	0,46542	-6,75338	-0,03000	-0,05800	10,0324
4	58,29978	-0,053611	7,35076	-0,27046	4,49850	-0,01100	-0,02968	8,8968
5	3,32968	-0,84377	7,08952	-1,32089	19,98477	-0,01250	-0,02960	9,9945

$$PF_{cap} = b_o + b_1 L + b_2 \sqrt{L} + b_3 FFS + b_4 \sqrt{FFS} + b_5 HV\% + b_6 \sqrt{HV\%} + b_7 FFS (HV\%) (2.19)$$

em que *b*₀ *a b*₇ são coeficientes apresentados na Tabela 2.18.

Tabela 2.18: Coeficientes b para o cálculo d a PF_{cap} em segmentos com faixa adicional (Washburn $et\ al.$, 2018)

Classe Vertical	\boldsymbol{b}_{θ}	b 1	b_2	b 3	<i>b</i> ₄	b 5	b 6	b 7
1	61,73075	6,73922	-23,68853	-0,84126	11,44533	-1,5124	1,50390	0,00491
2	12,30096	9,57465	-30,79427	-1,79448	25,76436	-0,66350	1,26039	-0,00323
3	206,07369	-4,29885	0,00000	1,96483	-30,32556	-0,75812	1,06453	-0,00839
4	263,13428	5,387749	-19,04859	2,73018	-42,76919	-1,31277	-0,32242	0,01412
5	126,95629	5,95754	-19,22229	0,43238	-7,35636	-1,03017	-2,66026	0,01389

Após esse procedimento, deve ser calculada a *PF* para um fluxo menor do que a capacidade do segmento de análise, para os segmentos com zona de ultrapassagem proibida (Equação 2.20) e para os segmentos com faixa adicional de subida (Equação 2.21).

$$PF_{25\%cap} = c_0 + c_1 L + c_2 \sqrt{L} + c_3 FFS + c_4 \sqrt{FFS} + c_5 HV\% + c_6 FFS \frac{v_o}{1000} + c_7 \sqrt{\frac{v_o}{1000}}$$
(2.20)

em que *c*₀ *a c*₇ são coeficientes apresentados na Tabela 2.19.

.

Tabela 2.19: Coeficientes c para o cálculo d a $PF25_{wap}$ em segmentos com zonas de ultrapassagens proibida (Washburn et~al., 2018)

			<u> </u>					
Classe Vertical	Co	c 1	c 2	C 3	C4	C 5	C 6	C 7
1	18,01780	10,00000	-21,60000	-0,97853	12,05214	-0,00750	-0,6700	11,6041
2	47,83887	12,80000	-28,20000	-0,61758	5,800000	-0,04550	-0,03344	11,3557
3	125,40000	19,50000	-34,90000	0,90672	-16,10000	-0,11000	-0,06200	14,7114
4	103,13534	14,68459	-23,72704	0,664436	-11,95763	-0,10000	0,00172	14,7007
5	89,00000	19,02642	-34,54240	0,29792	-6,62528	-0,16000	0,00480	17,5661

$$PF_{25\%cap} = c_0 + c_1 L + c_2 \sqrt{L} + c_3 FFS + c_4 \sqrt{FFS} + c_5 HV\% + c_6 \sqrt{HV\%} + c_7 FFS (HV\%) (2.21)$$

em que c₀ a c₇ são coeficientes apresentados na Tabela 2.20.

Classe Vertical	CO	<i>c</i> 1	<i>C</i> 2	<i>C</i> 3	C4	C 5	C 6	C 7
1	80,37105	14,44997	-46.41831	-0,23367	0,84914	-0,56747	0,89427	0,00119
2	18,37886	14,71856	-47.78892	-1,43373	18,32040	-0,13226	0,77217	-0,00778
3	239,98930	15,90683	-46.87525	2,73582	-42,88130	-0,53746	0,76271	-0,00428
4	223,68435	10,26908	-35.60830	2,31877	-38,30034	-0,60275	-0,67758	0,00117
5	137,37633	11,00106	-38.89043	0,78501	-14,88672	-0,72576	-2,49546	0,00872

Após o cálculo da PF_{cap} e da $PF_{25\%cap}$, deve-se, então, calcular os coeficientes m e p, conforme apresentado nas equações 2.25 e 2.26, respectivamente.

$$m = d_{1} \left(\frac{0 - \ln \left[1 - \frac{PF_{25\%}}{100} \right]}{0.25 \cdot \left[\frac{cap}{1000} \right]} \right) + d_{2} \left(\frac{0 - \ln \left[1 - \frac{PF_{25\%}}{100} \right]}{\left[\frac{cap}{100} \right]} \right), \tag{2.22}$$

em que d_1 e d_2 são coeficientes conforme a Tabela 2.21.

Tabela 2.21: Coeficientes d_1 e d_2 para o cálculo do coeficiente de inclinação m (Washburn $et\ al.$, 2018)

Segmento	d_1	d_2
Zona de ultrapassagem proibida	-0,29764	-0,71917
Faixa adicional de subida	-0,15808	-0,83732

$$p = e_{0} + e_{1} \left(\frac{0 - \ln \left[1 - \frac{PF_{\% cap}}{100} \right]}{\% cap \left[\frac{cap}{1000} \right]} \right) + e_{2} \left(\frac{0 - \ln \left[1 - PF_{cap} \right]}{\left[\frac{cap}{1000} \right]} \right) + e_{3} \sqrt{\frac{0 - \ln \left(1 - \frac{PF\% cap}{100} \right)}{\% cap \left[\frac{cap}{1000} \right]}} + e_{4} \sqrt{\frac{0 - \ln \left(1 - \frac{PF_{cap}}{100} \right)}{\left[\frac{cap}{1000} \right]}}$$

$$(2.23)$$

em que e_0 a e_4 são coeficientes apresentados na Tabela 2.22.

Tabela 2.22: Coeficientes *e*⁰ *a e*⁴ para o cálculo de *p* (Washburn *et al.*, 2018)

Segmento	e_0	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄
Zona de ultrapassagem proibida	0,81165	0,37920	-0,49524	-2,11289	,
Faixa adicional de subida	-1,63246	1,64960	-4,45823	-4,89119	

Após esse cálculo, deverá ser calculada a PF do segmento com o uso da equação 2.17. Somente após esses processos, deverá ser calculada FD_d com a equação 2.8. Por fim, o resultado deverá ser usado para obter o nível de serviço com base na Tabela 2.5.

Assim, diante da quantidade de coeficientes de ajustes que o novo método propõe, fica ainda mais clara a necessidade de se estudar as condições locais para que o nível de serviço seja compatível com a realidade das rodovias e dos motoristas e veículos que utilizam a infraestrutura.

3 COLETA DE DADOS DE TRÁFEGO

Nesta seção, são apresentados os métodos usados nesta pesquisa para realização de coleta de dados de tráfego, bem como as características geométricas dos segmentos observados. A principal base de dados usada consiste em posicionar câmeras de vídeo nas extremidades e em pontos intermediários de trechos selecionados para obter informações como as velocidades médias de viagem, a composição veicular e os *headways* dos veículos.

As coletas de dados foram planejadas levando em consideração a obtenção de correntes de tráfego de modo que se tenha um conjunto diverso, seja do ponto de vista da magnitude do fluxo de tráfego, seja considerando-se a geometria dos trechos. Pensando nisso, foram realizadas vistorias na BR-040, rodovia escolhida para obtenção de dados de tráfego, em busca de locais em que fossem observados fluxos elevados durante o dia.

No trabalho de Bessa Jr. (2015), foram desenvolvidos modelos de tráfego, como a relação fluxo-velocidade, a partir de dois parâmetros: o *Rise and Fall (RF)* – para representar o alinhamento vertical – e a curvatura *bendiness (BD)* – que representa o alinhamento horizontal. O *RF* é definido como a quantidade de subidas e descidas, em metros, de um determinado segmento com o comprimento dado em km, sendo, portanto, o *RF* dado em m/km. Foram estabelecidas cinco classes de alinhamentos verticais, a saber: $0 \le RF \le 20$ m/km; $20 < RF \le 40$ m/km; $40 < RF \le 60$ m/km; $60 < RF \le 80$ m/km; e RF > 80 m/km. O parâmetro *BD*, por sua vez, é definido como o somatório das mudanças angulares no alinhamento horizontal, dado em graus, em um determinado segmento de rodovia com comprimento dado em km. De maneira análoga ao *RF*, o alinhamento horizontal também pode ser categorizado da seguinte forma: $0 \le BD \le 50$ °/km; $50 < BD \le 100$ °/km; $100 < BD \le 150$ °/km; $150 < BD \le 200$ °/km; e BD > 200 °/km. Foram desenvolvidos modelos de tráfego apenas para quatro tipos de geometria viária (combinações das categorias de *RF* e *BD*), como pode ser visto na Tabela 3.1, uma vez que só foram obtidos dados de campo nesses tipos de rodovia.

Tabela 3.1: Classificação dos segmentos observados com filmadoras em função da geometria (Bessa Jr., 2015)

DE (m/lm)	BD (graus/km)								
RF (m/km) $-$	0-50	50-100	100-150	150-200	>200				
0-20	7	-	-	1	-				
20-40	7	-	1	-	-				
40-60	-	-	-	-	-				
60-80	-	-	-	-	-				
>80	-	-	-	-	-				

Embora, nesta pesquisa, não tenham sido produzidos modelos de tráfego com base em *RF* e *BD* (como pode ser visto em capítulos subsequentes), a escolha dos locais de coleta de dados de tráfego procurou segmentos viários para realização de coletas de dados de tráfego que tivessem valores de *RF* e *BD* diversos, e, consequentemente, alinhamentos vertical e horizontal de vários níveis. Foram realizadas vistorias ao longo da BR-040, entre os municípios de Curvelo-MG e Cristalina-GO, além da análise do perfil geométrico da via com auxílio de GPS e do Google Earth.

De posse dos dados de volume de tráfego do primeiro semestre de 2017 das praças de pedágio do trecho, buscou-se identificar os períodos com fluxos de tráfego maiores, o que ocorreu durante os feriados da Semana Santa e do 7 de Setembro tanto perto de Curvelo-MG (que é mais próxima de Belo Horizonte - MG), quanto em Cristalina-GO (cidade mais perto de Brasília-DF). Sendo assim, foram selecionados cinco trechos da BR-040, próximos à Cristalina-GO (durante a Semana Santa de 2018) e próximos a Curvelo (durante o feriado da Independência de 2018).

A maior parte dos dados foi obtida com o método das placas, que consiste em determinar o número de veículos que passam por um determinado trecho viário em um dado período de tempo, classificando-os por categoria, sentido, pelo registro do instante da passagem dos veículos e das placas na entrada e saída dos trechos que contam com os pesquisadores posicionados na lateral da via. No total, na pesquisa realizada durante a Semana Santa de 2018, foram pesquisadas oito seções, sendo que em cada ponto havia dois pesquisadores, por sentido de tráfego. Em Cristalina-GO, foram realizadas coletas em cinco seções, nas tardes de quinta-feira e domingo do feriado da Semana Santa de 2018. Na manhã de 30

de março de 2018, a coleta foi realizada em pontos no município de Paracatu-MG. A Figura 3.4 mostra as seções em que esse método foi aplicado.

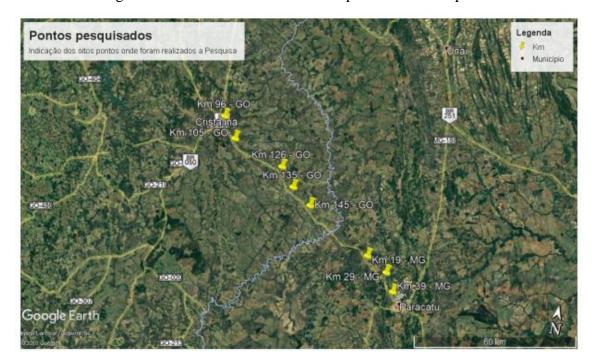


Figura 3.1: Pontos de coleta de dados pelo método das placas

Para a coleta de dados, foram usados: gravadores para o registro das informações do instante de passagem do veículo, placa e categoria veicular; câmeras para o registro de imagem no local e para auxiliar na captação do áudio; cronômetros para o controle do tempo; e rádios *walk-talk* para comunicação entre os pesquisadores de campo. Durante a Semana Santa de 2018, foram realizadas pesquisas de tráfego nos seguintes dias e horários:

- 29 de março de 2018, das 13:00 h às 17:00 h, nos trechos entre os km's 95 e 105; 130 e 140; e 140 e 150;
- 30 de março de 2018, das 8:00 h às 12:00 h, nos trechos entre os km's 19 e 29; e 29 e 39; e
- 1 de abril de 2018, das 13:00 h às 17:00 h, novamente nos trechos entre os km's 95 e 105; 130 e 140; e 140 e 150.

Na Tabela 3.2, são apresentadas as informações sobre a geometria viária dos trechos analisados na Semana Santa de 2018. Todos os trechos de análise têm o *BD* entre 0 e 50 graus/km. Já quanto ao alinhamento vertical, um segmento tem *RF* entre 0 e 20 m/km, enquanto outros quatro trechos têm *RF* entre 20 e 40 m/km. A Tabela 3.3 apresenta tanto o mínimo quanto o máximo dos fluxos de tráfego encontrados, por sentido, com o mínimo e o máximo da velocidade média de viagem, por sentido.

Tabela 3.2: Segmentos observados na Semana Santa de 2018

km inicial	km final	UF	Extensão (km)	RF (m/km)	BD (graus/km)
95	105	GO	10	24	3
125	135	GO	10	16	8
135	145	GO	10	34	18
130	140	GO	10	28	19
140	150	GO	10	29	12

Tabela 3.3: Fluxos e velocidade média observados na Semana Santa de 2018

km inicial	km final	Fluxo Sentido GO- MG (veic/h)		Fluxo Sentido MG-GO (veic/h)			ide média n/h)
		Min	Max	Min	Max	Min	Max
95	105	92	148	32	88	80	112
125	135	54	280	16	768	46	94
135	145	52	192	16	92	76	95
130	140	48	368	336	1200	71	103
140	150	16	352	336	1024	77	124

Figura 3.2 Perfis vertical e horizontal do trecho entre os km's 96 e 105 da BR-040

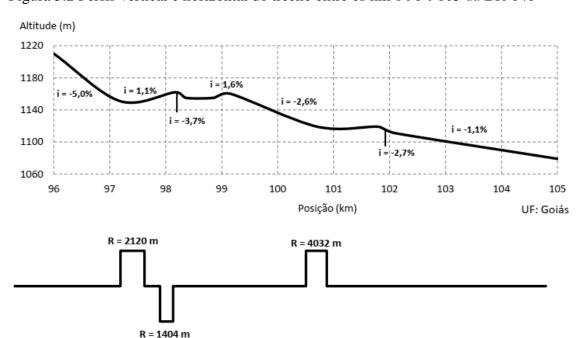
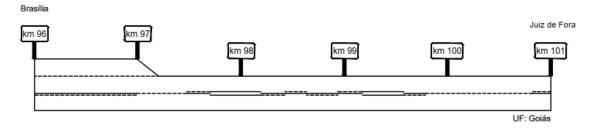
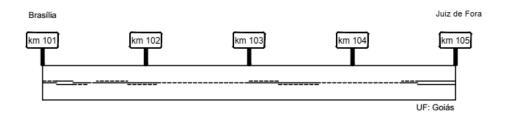




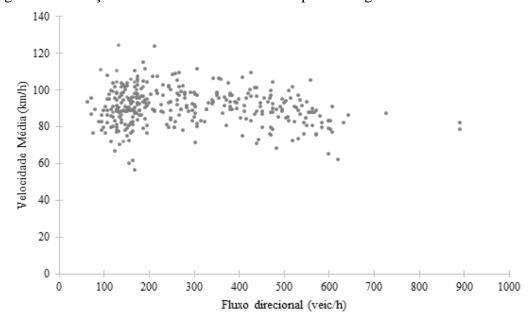
Figura 3.3: Sinalização horizontal do trecho entre os km's 96 e 105 da BR-040

Os perfis verticais e horizontais dos trechos coletados foram organizados como mostrado na Figura 3.2, enquanto a sinalização horizontal (com as zonas de ultrapassagens proibidas e localização de faixas adicionais) podem ser vistas na Figura 3.3, sendo essas figuras referentes aos km's 96 a 105 da BR-040. Os demais trechos, incluindo os do Feriado da Independência, podem ser vistos no Apêndice A.

A segunda etapa da coleta de dados de tráfego foi com uma coleta ocorrida nos dias 7 e 9 de setembro de 2018 na rodovia BR-040, nas proximidades dos municípios de Felixlândia e São Gonçalo do Abaeté, localizados em Minas Gerais. Para a escolha dos trechos de análise, foi observado o fluxo de veículos no feriado de 2017 a partir da contagem de veículos das praças de pedágio próximas ao segmento. Os dados de tráfego foram obtidos nos seguintes dias e horários:

- 7 de setembro, das 9 h às 13 h, nos trechos entre os km's 288 e 298;
- 9 de setembro, das 13 h às 17 h, nos trechos entre os km's 359 e 399.

Nas Tabelas 3.4 e 3.5 estão elencadas, respectivamente, as informações sobre a geometria viária e uma síntese dos dados de fluxo e velocidade obtidos. A Figura 3.4 apresenta a relação fluxo-velocidade direcional obtida nas coletas de dados, para correntes de tráfego agregadas a cada 15 minutos.


Tabela 3.4: Segmentos observados no feriado da Independência de 2018

km inicial	km final	UF	Extensão (km)	RF (m /km)	<i>BD</i> (graus/km)
288	298	MG	10	38,7	24,5
359	369	MG	10	22,04	5,5
369	379	MG	10	29,7	5,9
379	389	MG	10	25,94	9,5
389	399	MG	10	26,7	22,1

Tabela 3.5: Fluxos e velocidade média observados no feriado da Independência de 2018

km inicial	km final	Fluxo Sentido GO- MG (veic/h)		Fluxo Sentido MG-GO (veic/h)		Velocidade média (km/h)	
		Min	Max	Min	Max	Min	Max
288	298	140	208	128	319	77,5	107
359	369	380	728	100	268	73	112
369	379	352	584	64	204	72	110
379	389	300	892	72	196	76	106
389	399	412	644	76	180	63	95

Figura 3.4: Relação fluxo-velocidade direcional para os segmentos viários observados

Por fim, a etapa da coleta de dados de tráfego foi completada com uma coleta ocorrida em março de 2019 com o objetivo específico de avaliar o comportamento de motoristas em curvas, conforme será detalhado na sequência.

3.1 Coleta de dados com veículo aéreo não tripulado (Drone)

Com o recente desenvolvimento da tecnologia dos veículos aéreos não tripulados (*drones*), que possibilitou a redução do custo desses equipamentos, algumas pesquisas na área de transportes começaram a ser conduzidas com o suporte de *drones* para a coleta de dados.

Khan *et al.* (2016) apresentaram uma proposta para a realização de pesquisas em que a coleta de dados são feitas com drones, estruturando-se em sete etapas: (i) definição do escopo; (ii) planejamento de voo; (iii) realização do voo; (iv) obtenção dos dados; (v) processamento e análise dos dados; (vi) interpretação dos dados; e (vii) aplicação dos resultados. Destaca-se que essa proposta se assemelha, em linhas gerais, ao processo de desenvolvimento planejado para esta pesquisa.

Uma indagação que pode ser realizada a partir do uso de drones para pesquisas de tráfego está relacionada com a acurácia dos dados obtidos. Nesse sentido, Barmpounakis *et al.* (2017) realizaram um estudo que procurou verificar a acurácia de diferentes tipos de dados obtidos com o uso de um drone equipado com câmeras para filmagem, incluindo para a observação da velocidade de percurso dos automóveis. Utilizando-se de um veículo teste equipado com GPS e um drone estático em relação a rodovia e com altitude controlada, os autores concluíram que os erros não excederam a 1,2 km/h mesmo que haja variações na altitude em que o drone está posicionado. Contudo, ressalta-se que o levantamento foi realizado em um segmento de baixo volume de tráfego e o veículo realizou um trajeto pré-determinado.

Mais recentemente, Lisel (2018) usou um software para realizar o rastreamento de objetos em imagens capturadas por drone num ambiente urbano, com o objetivo de calibrar o simulador VISSIM. Foram realizadas observações da distância entre os veículos parados a partir da marcação de veículos parados no sinal semafórico.

Para esta pesquisa, e com o intuito principal de registrar ultrapassagens em zonas permitidas com e sem faixas adicionais em rodovias de pista simples, foi adquirido o quadricóptero portátil Mavic Pro (DJI, 2017). O equipamento possui uma câmera estabilizada que captura vídeos em qualidade 4K, fotos de 12 megapixels, modos de voo

inteligentes e recurso de desvio de obstáculos. Alcança uma velocidade máxima de voo de 65 km/h e um tempo máximo de voo de 27 minutos. Na Figura 3.5, é possível observar o Mavic Pro.

Figura 3.5: Drone Mavic Pro

Alguns voos foram realizados com o Mavic Pro com o intuito de planejar filmagens de trechos de rodovias de pista simples da BR-040 de modo que pudessem ser analisadas as ultrapassagens em zonas permitidas e em locais com faixas adicionais. De acordo com a legislação brasileira (Agência Nacional de Aviação Civil, 2017), não podem ser realizados voos com mais de 120 m de altura, o que delimita a observações de trechos de ultrapassagens com comprimento suficiente para observação das manobras. O posicionamento escolhido para obtenção dos dados de tráfego foi de forma semelhante ao observado na Figura 3.6.

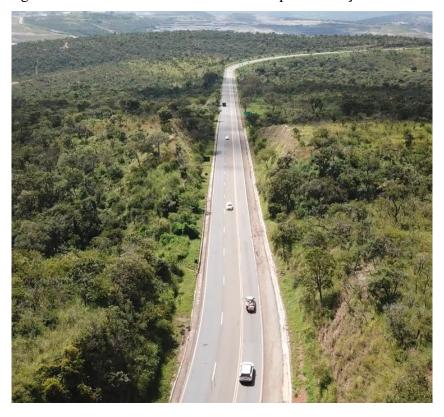


Figura 3.6: Posicionamento do Mavic Pro para obtenção dos dados

Diante do posicionamento do *drone*, foi necessário avaliar como tratar as imagens para que os dados obtidos fossem confiáveis. Jacobsen e Cybis (2011) analisaram imagens captadas do topo de uma edificação com o objetivo de capturar a travessia de pedestres em que as medidas e os ângulos reais não são preservados. Então, foi aplicada uma transformação geométrica para viabilizar o uso das imagens para rastreamento das posições, distâncias e velocidades reais dos objetos e para que os objetos mais distantes pudessem ter seus contornos marcados com maior precisão.

Nesta pesquisa, para corrigir as distorções das distâncias com o drone posicionado em direção ao horizonte, foi utilizado um programa (Cunha, 2013) para transformar a perspectiva da imagem de modo que a rodovia possua um formato retangular. Para isso, é necessário indicar, no programa, qual a zona em que se deseja fazer a correção da perspectiva, informando também o comprimento dessa zona. A Figura 3.7 mostra como essa indicação da zona deve ser feita.

Figura 3.7: Definição da área de processamento (Cunha, 2013)

Para que as escalas de distâncias pudessem ser identificadas nos vídeos dos drones, foram posicionados cones no bordo da pista, como indica a Figura 3.8. Dessa forma, foi possível determinar parâmetros de submodelos comportamentais do VISSIM relacionados com as manobras de ultrapassagens em rodovias de pista simples. O resultado perspectiva transformada pode ser visto na Figura 3.9. A análise das informações dessas figuras a fim de calibrar e validar o VISSIM será apresentada no capítulo a seguir.

Figura 3.8: Posicionamento de cones na pista

Figura 3.9: Aplicação da perspectiva transformada

3.2 Coleta de dados em curvas horizontais

Durante o andamento da pesquisa, foi necessário calibrar o comportamento dos condutores nas curvas horizontais, para que as simulações pudessem ser mais condizentes ao comportamento observado em campo, uma vez que não há um modelo específico no VISSIM para curvas horizontais. Para isso, foi realizada uma coleta de dados específica em março de 2019 para obter informações dos comportamentos dos condutores nas curvas horizontais. A coleta foi realizada entre os km's 395 e 404, próximos ao município de Curvelo A Figura 3.10 abaixo demonstra o perfil horizontal do segmento analisado.

A coleta consistiu em acompanhar o desenvolvimento dos veículos leves e pesados em segmento pré-determinado da rodovia e registrar todas as informações com um GPS. Foi registrado o percurso de 20 automóveis e 10 caminhões, entre leves, médios, pesados e extrapesados. Então, foram consideradas as curvas horizontais que se sucederam a segmentos de tangentes maiores de 500 m.

O objetivo foi capturar o comportamento e a velocidade dos veículos livres e observar a alteração de velocidade quando trafegando em curvas. Nesse sentido, foram analisadas as seguintes variáveis dependentes da velocidade em curva: (i) a velocidade do veículo livre quando trafegando em tangentes maiores que 500 m (velocidade desejada); (ii) a inclinação da curva; (iii) o raio da curva; e (iv) o desenvolvimento da curva.

Entretanto, para os veículos leves, foi identificado que o raio e o desenvolvimento da curva não apresentaram correlação com o a velocidade em curva. Dessa forma, optou-se por uma simplificação do tratamento das curvas horizontais analisando-se a redução de velocidade apenas em função da velocidade em tangente. Muito provavelmente, os motoristas reduzem um pouco a velocidade nas curvas em função de segurança para realização das manobras, mas não foi possível correlacionar com os outros atributos esperados. Assim, foi realizada regressão para obtenção do modelo simplificado, que apresentou um R² de 0,98. O modelo obtido foi:

$$v_{\text{curva}} = 0.95v_{\text{tangente}}, \tag{3.1}$$

A aplicação desse modelo foi realizada na modelagem dos trechos obtidos por filmagem no VISSIM, especialmente para a calibração e a validação do simulador.

4 CALIBRAÇÃO E VALIDAÇÃO DO VISSIM

O comportamento dos motoristas ao realizar manobras de ultrapassagens, como discutido no Capítulo 2, tem sido incorporado nos simuladores de tráfego nos últimos anos para permitir a simulação de rodovias de pista simples. Isso tem ocorrido tanto com aqueles softwares mais comerciais, como aqueles voltados essencialmente para trabalhos de pesquisa. O TRARR (Hoban *et al.*, 1991) e o TWOPAS (Leiman e May, 1996) foram, durante muito tempo, os simuladores mais utilizados para modelagem de rodovias de pista simples. O TWOPAS foi empregado no desenvolvimento do método para análise da capacidade e do nível de serviço desse tipo de rodovia do HCM 1985 (TRB, 1985; Harwood *et al.*, 1999), no HCM 2000 (Harwood *et al.*, 1999; TRB, 2000) e no HCM 2010 (TRB, 2010).

Há outros softwares capazes de simular rodovias de pista simples, mas que são voltados principalmente para pesquisas, tais como o sueco RUTSIM (*Rural Traffic Simulator*) (Tapani, 2005); o alemão LASI, que foi usado no desenvolvimento dos procedimentos do HBS2001 para esse tipo de rodovia (Brilon e Weiser, 2006); e o finlandês HUTSIM (TKK, 2011).

Daqueles softwares que podem ser adquiridos comercialmente, destaque para quatro simuladores que incorporaram a modelagem de rodovias de pista simples recentemente, o CORSIM (McTrans, 2010), o TransModeler (Caliper, 2018), o VISSIM (PTV, 2017) e o AIMSUN (TSS, 2018). Desses, o CORSIM foi o primeiro a incorporar esse tipo de modelagem, como explicado em Washburn e Li (2010), com a manobra de ultrapassagem tendo sido fortemente baseada no modelo analítico do *Green Book* (AASHTO, 2001).

O VISSIM é um dos principais programas de simulação microscópica para modelar operações de transporte multimodal e pode ser usado para criar diferentes cenários de tráfego em detalhes com uma abordagem dinâmica e estocástica (PTV, 2018). Possui submodelos comportamentais, como os de *car-following*, de mudanças de faixa, de aceitação de brechas e de desempenho veicular.

Como a lógica de simulação em rodovias de pista simples do VISSIM teve que ser incorporada para se adequar a outros submodelos do simulador já existentes, surge a necessidade de calibrar e validar o modelo de simulação para esse tipo de rodovia, frente a diferentes níveis de demanda, de porcentagem de veículos pesados e diferentes configurações de zonas de ultrapassagens proibidas.

Como cada grupo de parâmetros comportamentais de motoristas inclui inúmeras possibilidades de ajustes, é importante determinar previamente quais parâmetros são mais importantes. Hollander e Liu (2008) propõem organizar os parâmetros em grupos a fim de determinar quais são os parâmetros efetivamente relevantes para calibração. Esses grupos são:

- 1. Parâmetros facilmente obtidos em campo;
- Parâmetros disponíveis em estudos anteriores e que podem ser replicados para a situação de análise;
- 3. Parâmetros que não influenciam os dados de saída e, portanto, não precisam ser selecionados para calibração. Para determinar se um parâmetro influencia ou não os dados de saída, sugere-se realizar uma análise de sensibilidade em que os parâmetros são variados individualmente ou em conjunto;
- 4. Parâmetros que não são necessários na modelagem. É o caso de simulações para analisarem o comportamento de automóveis, e que, portanto, não é necessário ajustar os parâmetros de veículos pesados, por exemplo.
- 5. Todos os demais parâmetros que não puderem ser classificados conforme descrito acima devem ser considerados para calibração.

A partir dessa abordagem, foi possível reduzir o grupo de parâmetros de calibração do VISSIM, que será utilizado nesta pesquisa, uma vez que serão modeladas correntes de tráfego ininterruptas e microssimuladas. Assim, não foi necessário analisar os parâmetros de calibração relacionados com interseções semaforizadas e voltados para simulações mesoscópicas.

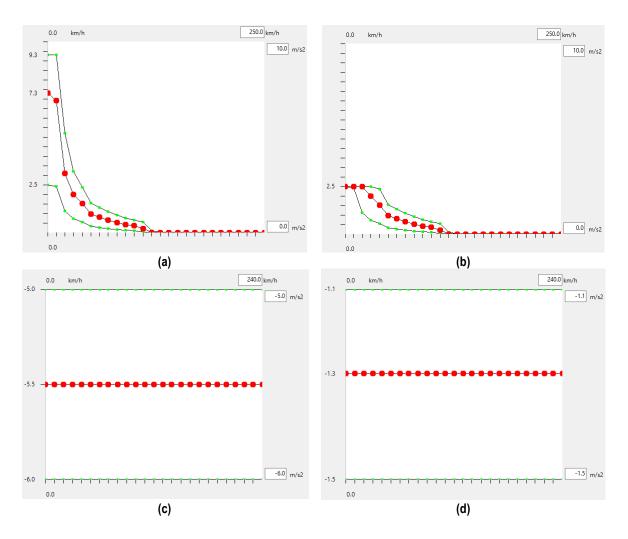
Dentre os parâmetros obtidos diretamente do campo, há aqueles utilizados para compor o modelo, como, por exemplo, as características dos veículos pesados e a distribuição de velocidades desejadas. Ainda assim, restaram 38 parâmetros — relacionados com os submodelos comportamentais — para análise de relevância para calibração. As duas seções

a seguir tratam da obtenção do modelo de desempenho veicular para veículos pesados e da distribuição de velocidades desejadas a partir de dados de campo. Os parâmetros comportamentais são tratados a partir da seção 5.3.

4.1 Caracterização dos veículos pesados para fins de simulação com o VISSIM

Os diferentes comportamentos dos veículos no VISSIM são modelados de acordo com a aceleração e a desaceleração, juntamente com os dados de massa e de potência, usandose, para isso, funções de distribuição (em vez de dados médios). O microssimulador fornece funções padrões de aceleração e desaceleração para os tipos de veículos normalmente usados na Europa Ocidental, o que justifica a necessidade da caracterização da frota típica do local que se deseja simular (PTV, 2018).

No microssimulador, existem quatro tipos de funções: duas funções de aceleração, máxima e desejada, e duas de desaceleração, também de máxima e desejada, como mostra a Figura 4.1. A função de aceleração máxima está relacionada com a velocidade atual do veículo e significa aquelas situações em que os motores de combustão são usados plenamente, sobretudo em velocidades mais baixas e em rampas (PTV, 2018).


As curvas – máxima e desejada – situam-se dentro de um intervalo de valores máximo e mínimo, tendo, entre elas, uma curva média representada pela mediana das acelerações em função da velocidade (PTV, 2018). Na Figura 4.1, as curvas com marcadores vermelhos indicam as curvas de máximo e de mínimo, enquanto os marcadores verdes indicam a mediana desse intervalo (para um dado valor de velocidade). A Figura 4.21 mostra as distribuições acumuladas de massa e de potência para o veículo *default* do VISSIM.

A aceleração máxima é usada para manter uma certa velocidade em rampas, ou seja, quando é necessária uma aceleração maior. Ela é ajustada, automaticamente, em -0,1 m/s² para cada 1% de rampa ascendente e em +0,1 m/s² para cada 1% de rampa descendente. Essa função é dependente da relação massa/potência dos veículos, da seguinte forma: se a relação massa/potência de um veículo é a mínima possível (da combinação de valores obtidos aleatoriamente das curvas de massa e de potência), a aceleração máxima é escolhida na curva de valores mínimos, para uma dada velocidade; da mesma forma, se a relação massa/potência é máxima, é selecionada uma aceleração na curva de valores

máximos; e se a relação massa/potência tem um valor médio, a aceleração é selecionada com a curva de medianas. Para valores intermediários, é realizada uma interpolação linear. A aceleração desejada é usada em todas as situações em que a aceleração máxima não é necessária, com a aceleração limitada pela desejada (PTV, 2018).

Figura 4.1: Distribuição de aceleração máxima (a) e desejada (b) e de desaceleração máxima (c) e desejada (d) para os caminhões *default* do VISSIM

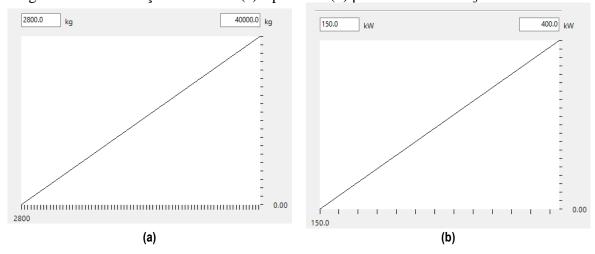


Figura 4.2: Distribuições de massa (a) e potência (b) para o caminhão default do VISSIM

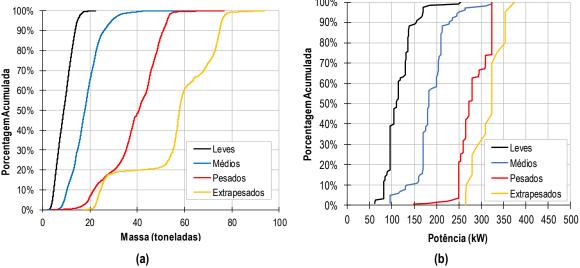
A função da desaceleração máxima é baseada no maior valor tecnicamente possível. Como os valores de desaceleração tem um sinal algébrico negativo, a desaceleração máxima é o menor valor de aceleração. A desaceleração desejada é ajustada automaticamente de modo que elas não sejam menores do que a desaceleração máxima. Assim como para a curva de aceleração máxima, a curva de desaceleração máxima é ajustada, automaticamente, em -0,1 m/s² para cada 1% de rampa ascendente e em +0,1 m/s² para cada 1% de rampa descendente (PTV, 2018). As funções de desaceleração são usadas para frenagem e não são objeto de análise deste trabalho.

Neste trabalho, as distribuições de massa e de potência foram obtidas em campo, especificamente na rodovia BR-040, que inicia-se em Brasília (DF) e termina no Rio de Janeiro (RJ), com extensão de 1.175,5 km, nos quais 936,8 km são de responsabilidade da concessionária BR-040 S/A. Para caracterizar a frota típica de caminhões da rodovia BR-040 em relação à massa e à potência, foram utilizados dados disponibilizados pela concessionária BR-040 S/A, a partir de pesagens realizadas por balanças móveis em dez pontos ao longo da rodovia, no ano de 2017, de acordo como apresentado na Tabela 4.1.

.

Tabela 4.1: Balanças móveis utilizadas na coleta de dados

km	Sentido	Pista	Data da	Tamanho	
			Início	Fim	da amostra
47	Norte	Simples	02/05/2017	08/05/2017	3811
86	Norte	Simples	09/05/2017	15/05/2017	2749
145	Norte	Simples	02/05/2017	08/05/2017	1684
284	Sul	Simples	09/05/2017	15/05/2017	2478
422	Sul	Simples	17/05/2017	23/05/2017	3170
422	Norte	Simples	17/05/2017	23/05/2017	3803
554	Sul	Dupla	24/05/2017	30/05/2017	3812
607	Sul	Dupla	04/06/2017	09/06/2017	3812
607	Norte	Dupla	10/06/2017	13/06/2017	3812
767	Sul	Dupla	04/06/2017	10/06/2017	1708


A amostra é constituída de 30.839 caminhões, os quais estavam divididos em categorias de acordo com o número de eixos. Os dados da potência dos modelos de caminhões foram obtidos no km 554, um dos pontos onde a balança móvel foi utilizada para pesagem dos veículos, escolha feita por ser um dos pontos com maior tráfego veicular. Foram coletados dados de marca e de modelo de 450 caminhões e, com esses, foram obtidas as potências através de *websites* dos fabricantes de cada tipo de veículo.

Foram obtidas distribuições de massa, potência e massa/potência agrupados em quatro categorias: leves, médios, pesados e extrapesados, como realizado no trabalho de Cunha et al. (2005). A ideia foi de não organizar os veículos em muitas categorias, haja vista que alguns simuladores, como o CORSIM (McTrans, 2010), apenas modela quatro tipos de veículos. No VISSIM, é possível caracterizar mais de quatro categorias, mas como não há um consenso sobre quantas categorias veiculares é o ideal, resolveu-se fazer simulações usando-se essas quatro categorias. Na Tabela 4.2, também é possível verificar os valores de massa e potência média dos caminhões da amostra, agrupados de acordo com as quatro classes definidas de caminhões. Na Figura 4.3, apresentam-se as distribuições acumuladas de massa e potência (que podem ser inseridas no VISSIM) para cada uma das classes veiculares.

TD 1 1 1 0	α_1	1	• 1 ~	• 1
Tabela 4.2:	LIBECAC	de	caminhoes	clideridae
1 aucia 7. 2.	Classes	uc	Camminocs	Suguituas

	Eixos		Média			
Classe		Caminhões	Massa	Potência		
			kg	kW	cv	
Leves	2	2C	9113	116	158	
	3 e 4	3C, 2S1, 2S2, 2C2,		196	266	
Médios		2I2, 3S1, 4C, 4CD,	18414			
		4DT e 2C3				
		2S3, 2I3, 3S3, 2I1,				
Pesados	5 e 6	3C2, I2, 3S2, 2R4,	37615	283	385	
resauos		3C3, 3D3L, 3I1,	3/013		363	
		3I3, 3S3 e 4R2				
Extroposodos	7 ou mais	3T4, 3D4, 3Q4 e	58792	322	438	
Extrapesados	/ Ou Illais	4R3	38192		438	

Figura 4.3: Distribuições acumuladas de massa (a) e potência (b) por classe sugerida

As distribuições de aceleração máxima e desejada foram estimadas com base no TruPer (Demarchi, 2000). O TruPer é uma macro, criada em Visual Basic 5.0, utilizada para simular o desempenho de um veículo isolado em uma via, englobando vários aspectos dessa interação. Por meio dessa ferramenta, é possível obter a velocidade e a distância em um intervalo de tempo específico, o que permite a elaboração de diferentes curvas e análises, como a curva de aceleração ao longo de um deslocamento.

Portanto, o método de obtenção das curvas de aceleração máxima consistiu em simular, no TruPer, um veículo tipo de cada uma das classes veiculares numa rampa (ascendente ou descendente), de 5 km, com velocidade inicial de 0 km/h e velocidade limite de 110 km/h. As rampas variaram, em módulo, de 0% a 8%. Para cada classe veicular, foram utilizados os 85° percentis das distribuições acumuladas da relação massa/potência

(RMP) e da massa (M), tendo sido calculada a potência (P) a partir desses dois valores, tendo, como resultado:

- Leves: RMP = 112 kg/kW; M = 13.200 kg; e P = 118 kW;
- Médios: RMP = 122 kg/kW; M = 23.900 kg; e P = 196 kW;
- Pesados: RMP = 175 kg/kW; M = 49.500 kg; e P = 283 kW; e
- Extrapesados: RMP = 230 kg/kW; M = 73.900 kg; e P = 321 kW.

As distribuições de aceleração possuem valores máximo, mínimo e mediana para velocidades específicas, como mostra a Figura 5.4. Foram definidas 11 classes de velocidade, de 0 a 110 km/h. Para a primeira classe, foram analisadas as acelerações com velocidades de 0 a 5 km/h (ponto médio igual a 0 km/h); 5 a 15 km/h (ponto médio da classe igual a 10 km/h), e assim por diante, sendo a última classe definida com velocidades entre 105 e 110 km/h (ponto médio da classe igual a 110 km/h). O valor mínimo consiste na média menos dois desvios padrões, enquanto os valores máximos foram obtidos da média mais dois desvios padrões, para cada intervalo de velocidades supracitado.

A Figura 4.4 mostra as distribuições de acelerações máximas para as quatro classes de caminhões. A Figura 4.5 mostra os resultados para as acelerações desejadas, que foram definidas de acordo com a proporção entre as distribuições de acelerações máxima e desejada do veículo *default* do VISSIM.

Figura 4.4: Distribuições de aceleração máxima obtidas para os caminhões leves (a), médios (b), pesados (c) e extrapesados (d)

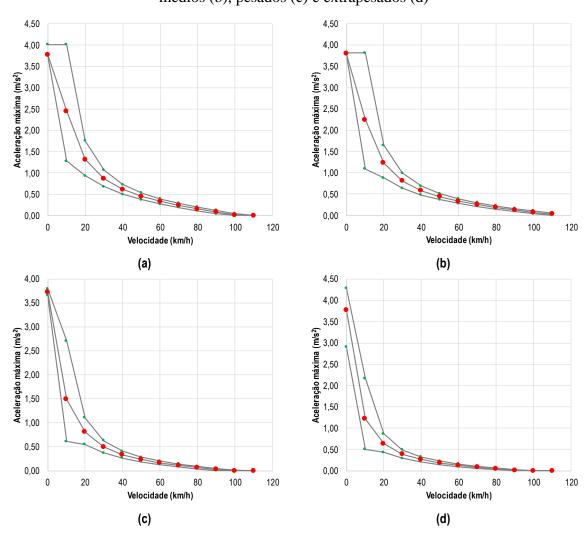
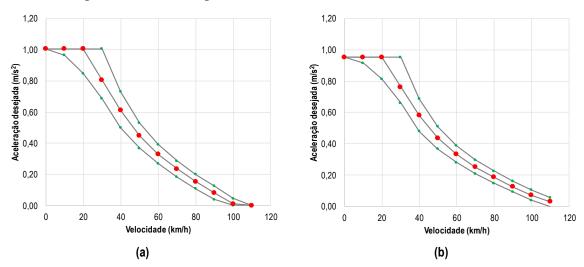
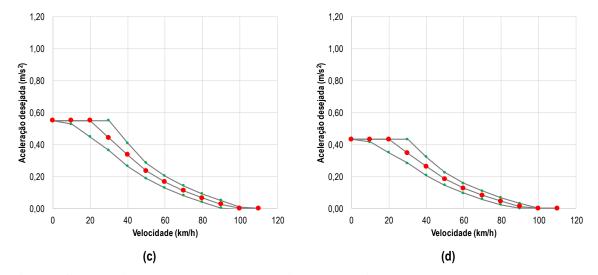




Figura 4.5: Distribuições de aceleração desejada obtidas para os caminhões leves (a), médios (b), pesados (c) e extrapesados (d)

(cont.) Figura 4.5: Distribuições de aceleração desejada obtidas para os caminhões leves (a), médios (b), pesados (c) e extrapesados (d)

4.2 Caracterização da curva de velocidades desejadas

O VISSIM trabalha com uma distribuição das velocidades desejadas, conforme pode ser observado na Figura 5.6. Nesta seção, é apresentado o método usado para estimar essa curva, para refletir o que ocorre nos trechos observados em campo por meio de filmagens (Capítulo 3).

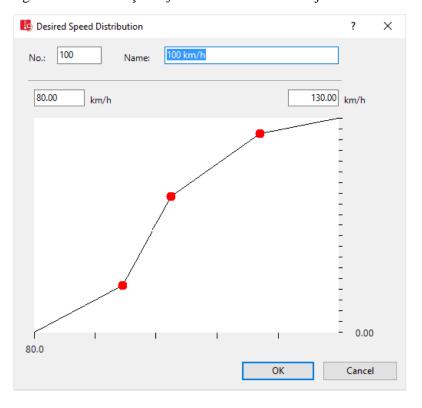


Figura 4.6: Distribuição default de velocidades desejadas do VISSIM

Para esta pesquisa, foram obtidos dados de velocidades pontuais registrando-se o momento de passagem em seções de segmentos viários (entrada e saída). Com esses dados, foi possível observar os veículos que estiveram em pelotões, considerados nesse estado quando os veículos trafegam com *headways* iguais ou menores que 2,5 segundos (valor crítico usado no HCM 2016). Os veículos que foram observados com *headways* maiores que 2,5 segundos são considerados veículos livres, que, teoricamente, trafegam na velocidade desejada.

Entretanto, após as primeiras simulações realizadas no VISSIM, foi identificado que a velocidade pontual não estava representando corretamente a velocidade média efetivamente observada em todos o segmento. Esse fato pode estar relacionado a alguma característica geométrica do final dos trechos ou a alguma visualização das equipes de coleta de dados que fazia com que os motoristas reduzissem a velocidade dos veículos.

Assim, optou-se por realizar um ajuste a partir da velocidade média no espaço obtida para cada um dos segmentos. O procedimento consistiu em obter, para cada segmento viário, o 50º percentil da distribuição de velocidades pontuais (para veículos fora dos pelotões) e então corrigi-lo em função das médias das velocidades médias no espaço de todas as

correntes de tráfego de cada segmento, deslocando a distribuição para a direita. Foram realizadas novas simulações e os resultados obtidos foram considerados mais condizentes com os dados de campo. A Figura 4.7 ilustra as curvas de velocidades desejadas para cada segmento observado em campo.

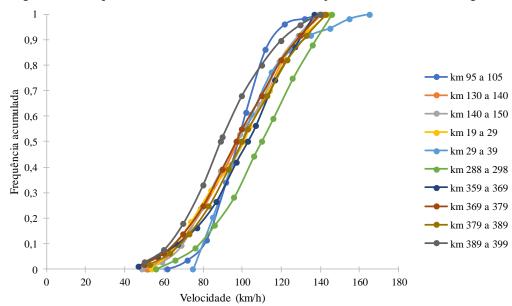


Figura 4.7: Frequência acumulada de velocidade desejada dos veículos em tangente

Para os subsegmentos com curvas horizontais, a distribuição de velocidades desejadas precisa ser ajustada, considerando-se a redução de velocidade de acordo com o modelo apresentado na Equação 3.1. No VISSIM, para os subsegmentos com curvas horizontais, foram modeladas novas distribuições de velocidades desejadas, conforme mostradas na Figura 4.8.

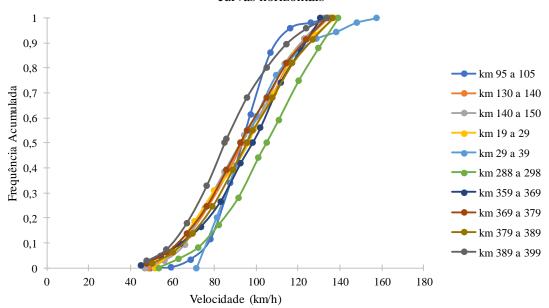


Figura 4.8 Frequência acumulada de velocidade desejada dos veículos considerando o efeito de curvas horizontais

4.3 Análise de sensibilidade e obtenção em campo dos parâmetros de calibração comportamentais

O modelo de *car-following* do VISSIM – de Wiedemann 1999 (PTV, 2018) – é conhecido como um modelo psicofísico, pois leva em consideração aspectos da percepção dos condutores. A premissa básica do modelo é a de que o motorista de um veículo mais rápido começa a desacelerar quando percebe um veículo mais lento. Como ele não consegue determinar, precisamente, a velocidade do veículo mais lento, a velocidade ficará menor que a do veículo que segue a frente. Então, ele começa a acelerar até alcançar novamente a velocidade do veículo à frente. Assim, enquanto o motorista estiver atrás do veículo mais lento, sua velocidade irá oscilar, alternando aceleração e desaceleração, evitando ficar com uma velocidade constante atrás do veículo à frente. O modelo do VISSIM considera que existem quatro estados para o condutor (PTV, 2018):

- Free driving: O condutor consegue trafegar na velocidade desejada sem ser influenciado por nenhum veículo. A velocidade do veículo só varia devido ao controle de aceleração do próprio motorista;
- *Approaching*: O motorista precisa reduzir a velocidade, pois há um veículo adiante e, após essa desaceleração, a velocidade permanece constante;

- Following: O motorista segue um veículo sem que haja processo de aceleração ou desaceleração do veículo, mantendo a velocidade constante;
- Braking: O condutor precisa frear, pois a distância do veículo da frente é menor que a distância de segurança.

Para a realização das ultrapassagens, é estabelecida uma distância de visibilidade máxima, sendo que, até essa distância, o condutor consegue observar o veículo no sentido oposto e, além dessa distância, assume-se que há um veículo na direção oposta. Determina-se, ainda, uma velocidade dos veículos no sentido oposto ao veículo que deseja realizar a ultrapassagem. Caso o veículo em sentido oposto esteja no limite de visibilidade, é adotada a mesma velocidade do veículo que deseja ultrapassar.

No VISSIM, o veículo deseja ultrapassar quando a velocidade desejada é mais alta que a do veículo que está à frente (por *default*, de 0 a 4 m/s, com média de 2 m/s com distribuição normal). A velocidade de ultrapassagem é a velocidade desejada somada ao "fator de velocidade de ultrapassagem", que corresponde a um fator de aceleração do veículo que deseja ultrapassar, sendo o padrão igual a 1,30 m/s². O tempo máximo da manobra é de 4 segundos (valor que também pode ser alterado).

Logo após realizar a ultrapassagem, o veículo reduz a velocidade para a velocidade desejada. A manobra só acontece caso haja espaço suficiente após ultrapassar o veículo lento, possibilitando que a ultrapassagem ocorra em segurança. Se, durante a manobra, é observado um veículo em sentido contrário, a manobra será abortada e os veículos que trafegam atrás podem reduzir a velocidade para garantir que o veículo retorne para o pelotão. O veículo trafegando em sentido oposto não é influenciado pela manobra de ultrapassagem. Antes da ultrapassagem ser realizada, o VISSIM não considera mudanças das condições de tráfego na faixa direcional, como redutores de velocidade, mas assim que a manobra é iniciada, o veículo sendo ultrapassado respeita essas sinalizações e as novas condições de tráfego.

O atributo que define a distância para a mudança de faixa e realização ultrapassagem (*lane change distance*) é sempre maior ou igual a distância para frenagem de emergência mais 5 metros. Importante ressaltar que não é possível alterar o comportamento do motorista, tornando-o mais agressivo; entretanto, é possível alterar a distância de

segurança, que depende da velocidade do veículo que deseja ultrapassar e da velocidade do veículo que segue a frente.

Para verificar quais parâmetros comportamentais do simulador — como os dos submodelos de *car-following* e de mudança de faixas — são mais relevantes para refletir as condições de tráfego, foi realizada uma análise de sensibilidade. Para isso, foram realizadas simulações com 10 replicações com diferentes sementes de números aleatórios em intervalos de 15 minutos, com 15 minutos de período de *warm-up*, para dois trechos da rodovia em que foram coletados dados com filmagens. As simulações foram realizadas com as mesmas proporções de veículos pesados e leves das correntes de tráfego obtidas em campo.

O trecho entre o km 95 e o km 105, onde foram obtidos dados de tráfego na Semana Santa de 2018, foi modelado no VISSIM de acordo com as características geométricas encontradas em campo. O trecho foi escolhido por apresentar uma maior amplitude de fluxo, apresentando tanto intervalos com baixo fluxo como os maiores fluxos de veículos observados na coleta. Nesse segmento, foram coletadas 26 correntes de tráfego de 15 minutos cada, com fluxo de tráfego variando entre 460 veic/h e 880 veic/h.

No trecho que compreende os kms 288 a 298, os dados de tráfego foram obtidos no feriado da Independência de 2018, e o segmento também foi modelado no VISSIM de acordo com as características geométricas observadas em campo. Nesse segmento, foram coletadas 15 correntes de tráfego de 15 minutos cada, com fluxos de tráfego variando entre 269 veic/h e 486 veic/h.

Após a realização das simulações para as correntes de tráfego observadas nos dois segmentos viários escolhidos, foram analisadas a *ATS* e a *PF* no final dos segmentos, por sentido. Foi possível observar que as simulações, quando foram utilizados os parâmetros *default* do VISSIM, tenderam a produzir resultados diferentes dos observados em campo. Ainda que essas simulações tenham sido modeladas com a distribuição de velocidade desejada e com os modelos de desempenho veicular obtidos em campo, os motoristas apresentaram um comportamento mais agressivo que o previsto no simulador, demonstrando-se a necessidade de realizar ajustes nos parâmetros comportamentais do simulador para refletir de forma mais fiel o comportamento dos motoristas.

Diante disso, foram analisados os parâmetros de calibração do comportamento dos motoristas disponíveis para ajustes no simulador. O VISSIM os organiza em cinco grupos de parâmetros de calibração: (i) *Following*, em que é possível ajustar o modelo de *carfollowing* e os modelos de visibilidade; (ii) *Lane Change*, em que estão disponíveis os atributos relacionados à mudanças de faixa, como aceleração e desaceleração dos veículos; (iii) *Lateral*, que relaciona os parâmetros de posicionamento dos veículos em relação a via e outros veículos, bem como as regras para a realização de ultrapassagens; (iv) *Signal Control*, que possibilita o ajuste do comportamento dos motoristas em função de semáforos; e (v) *Meso*, que permite o ajuste para a realização de mesossimulações.

Lacerda (2016) esclarece que, para análises de rodovias de pistas simples, dentre os modelos de car-following disponíveis no VISSIM, é recomendável utilizar o modelo Wiedemann 99, pois permite ajustar parâmetros comportamentais relativos a pistas simples que não são possíveis no modelo Widemann 74. Então, para realizar o teste de sensibilidade de modo a verificar quais parâmetros comportamentais são mais relevantes, foi utilizado um método (Lacerda, 2016) que consiste em alterar os parâmetros dos modelos do VISSIM de modo a verificar o impacto nos resultados da simulação.

Neste trabalho, foram escolhidos, como medidas de desempenho, a *ATS* e a *PF*, por sentido. Então, foram calculados Intervalos de Confiança (IC's) das diferenças dos resultados quando cada parâmetro é alterado, em relação aos resultados usando-se os parâmetros *default*. Caso os intervalos contenham o zero ou sejam pequenos, a influência do parâmetro na medida de desempenho é considerada pequena. Caso contrário, significa que o parâmetro é relevante (Lacerda, 2016).

Para a realização da análise de sensibilidade, todos os 38 parâmetros comportamentais foram alterados, nas simulações, por duas vezes: usando-se os valores mínimo e máximo de cada parâmetro. Posteriormente, nessas circunstâncias, foram obtidos os resultados de simulação que foram comparados com os resultados obtidos com os parâmetros *default*, calculando-se a média, o desvio padrão e o IC das diferenças absolutas dos resultados das simulações no VISSIM.

Na Tabela 4.3, é possível verificar os IC's obtidos para a análise de sensibilidade dos 38 parâmetros analisados. Desses, cinco parâmetros foram identificados como relevantes para calibração nos dois segmentos escolhidos para análise: (i) *Look Ahead Maximum*

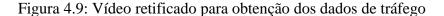
Distance (LookAheadDistMax); (ii) Observed Vehicles (ObsrvdVehs); (iii) Safety distance reduction fator - lane change (SafDistFactLnCg); (iv) W99cc1Distr; e (v) W99cc3, e estão destacados na mesma tabela (hachurados em azul).

Tabela 4.3: Intervalos de Confiança dos Parâmetros para calibração

140014 1151 111	ATS				PF			
	Segmento				Segmento			
Parâmetro	km95 - 105		km 288 - 298		km95 - 105		km 288 - 298	
	IC		IC		IC		IC	
AccDecelOwn	0,0	0,0	0,0	0,0	-0,7	-0,1	-0,1	0,1
AccDecelTrail	0,0	0,0	0,0	0,0	-0,1	0,0	0,0	0,0
CoopDecel	0,0	0,0	0,0	0,0	-0,6	-0,1	-0,2	0,2
CoopLnChgCollTm	0,0	0,0	0,0	0,0	0,0	0,2	0,0	0,0
CoopLnChgSpeedDiff	0,0	0,0	0,0	0,0	0,0	0,2	0,0	0,0
DecelRedDistOwn	0,1	0,1	0,0	0,0	-0,4	-0,1	-0,4	0,0
DecelRedDistTrail	0,0	0,0	0,0	0,0	-0,2	0,2	0,0	0,3
DiffusTm	0,0	0,1	0,0	0,1	-0,5	-0,2	-0,1	0,1
FreeDrivTm	0,0	0,0	0,0	0,0	0,0	0	0,0	0,0
LatDirChgMinTm	0,0	0,0	0,0	0,0	0,0	0,4	0,0	0,0
LatDistStandDef	0,3	0,8	0,0	0,0	-0,3	0,7	0,0	0,0
LatDistDrivDef	-2,2	-0,6	0,0	0,0	1,6	3,7	0,0	0,0
LookAheadDistMin	0,0	0,0	0,0	0,0	0,1	0,4	-0,1	0,1
LookAheadDistMax	-21,7	-14,5	-19,8	-11,5	-32,3	-21,2	-16,5	-6,4
LookBackDistMin	0,0	0,0	0,0	0,0	-0,3	-0,2	0,0	0,0
LookBackDistMax	-2,3	-1,0	-0,2	0,0	-4,1	-2	-0,5	0,1
MaxDecelOwn	0,0	0,1	-0,1	0,0	-0,5	0,1	-0,6	-0,1
MaxDecelTrail	0,0	0,1	-0,1	0,0	-0,3	0,1	-0,2	0,2
MinCollTmGain	0,0	0,0	0,0	0,0	-0,4	0,1	0,0	0,0
MinHdwy	0,0	0,0	0,0	0,0	-0,1	0,0	-0,2	0,1
MinSpeedForLat	0,0	0,0	0,0	0,0	-0,1	0,0	0,0	0,0
ObsrvdVehs	-2,0	-0,9	-3,2	-1,5	5,1	8,9	2,2	8,0
RearCorrEnd	0,0	0,0	0,0	0,0	-0,3	0,0	0,0	0,0
RearCorrMaxSpeed	0,0	0,0	0,0	0,0	-0,3	0,0	0,0	0,0
RearCorrStart	0,0	0,0	0,0	0,0	-0,3	0,0	0,0	0,0
SafDistFactLnChg	-0,7	-0,5	-0,4	-0,2	-30,2	-17	0,2	1,0
SleepDur	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SleepProb	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
StandDist	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
W99cc0	-0,1	0,0	-0,1	0,0	-0,3	0,3	-0,4	0,3
W99cc1Distr	-23,7	-15,9	-22,4	-13,3	-30,3	-18,5	-20,2	-10,5
W99cc2	-0,2	-0,1	-0,1	0,0	-3,1	-1,7	-0,4	0,3
W99cc3	-0,2	-0,1	0,9	1,8	-1,2	-0,5	-1,6	-0,3
W99cc4	-0,2	-0,1	-0,1	0,0	-0,5	0,3	-0,3	0,4
W99cc6	-0,1	0,0	-0,1	0,1	-0,8	-0,1	-0,4	0,1
W99cc7	-0,1	0,0	0,0	0,1	-0,5	0,0	-0,4	0,2
W99cc8	-0,1	0,0	0,0	0,0	-0,4	0,0	0,0	0,2
W99cc9	0,0	0,0	0,0	0,0	-0,2	0,2	0,0	0,1

Além disso, foi observado que outros três parâmetros apresentaram IC's sem o zero, para *PF* e *ATS*, somente para os dados do km 95 ao km 105, que são: (i) *Lateral Minimum Distance at 50 km/h* (*LatDistDrivDef*), que é o valor para a distância mínima entre veículos que é mantida dos veículos na faixa adjacente pelos veículos que ultrapassam na mesma faixa a 50 km/h; (ii) *Look back distance maximum* (*LookBackDistMax*), é a

distância máxima que um condutor pode ver para trás para reagir a veículos que trafegam atrás dele; e (iii) *W99cc2*, que é um parâmetro do modelo de *car-following* de Wiedemann 99 que restringe a diferença longitudinal, determinando quão distante um condutor admite ficar do veículo a frente em uma eventual aproximação (PTV, 2018).


Tomou-se a decisão de calibrar esses três parâmetros somente se fosse possível com os dados obtidos diretamente de campo. A Tabela 4.3 demonstra os resultados da análise de sensibilidade para esses parâmetros (hachurados em cinza). Devido às características desses parâmetros, não foi possível, nesta pesquisa, a obtenção dos dados de campo necessários para ajustar o comportamento dos motoristas para os parâmetros *Look back distance maximum* e *W99cc2*, pois seria necessário observar a condução de cada condutor em diferentes situações de tráfego. No entanto, para o *LatDistDrivDef*, foi possível obtêlo em campo, sendo considerado o sexto parâmetro de calibração relevante.

4.3.1 Lateral Minimum Distance at 50 km/h - LatDistDrivDef

De acordo com o Manual do VISSIM (PTV, 2018), o *LatDistDrivDef*, ou *Lateral Minimum Distance at 50 km/h*, é a distância mínima entre veículos, em relação à faixa adjacente, mantida pelos veículos que ultrapassam pela faixa do sentido oposto, a 50 km/h, sendo que o valor *default* desse parâmetro é de 1,0 m. Quando as velocidades de ultrapassagem são diferentes, os valores correspondentes à velocidade são obtidos por meio de interpolação linear. Então, para calibrar esse parâmetro, foi observado o comportamento dos veículos quando realizavam as ultrapassagens, captando-se a distância lateral e a velocidade em que os veículos realizavam as manobras.

Todas as manobras de ultrapassagens que foram registradas com o uso do Drone foram separadas e tratadas para a redução das distorções em decorrência do posicionamento da câmera em relação ao eixo da rodovia. A Figura 4.9 demonstra uma das imagens de um dos vídeos obtidos com o drone após o tratamento realizado utilizando o método de Cunha (2013) (Capítulo 3) e que foi utilizada para obtenção da distância lateral dos veículos.

Como os veículos observados trafegavam em velocidades superiores a 50 km/h, foi necessário ajustar a curva adotada pelo VISSIM. O manual do VISSIM (PTV, 2018) esclarece que os dados são interpolados entre 0 e 50 km/h para se ter a distância lateral entre essas velocidades e que a 0 km /h a distância lateral é de 0,2 m. Assim, das observações das ultrapassagens com os vídeos obtidos com drone, foi calculada a distância lateral a 50 km/h, usando-se a seguinte formulação:

$$LD_{50} = \left(\frac{50.LD_{campo}}{v_{campo}}\right) + 0.2,$$
 (4.1)

em que LD_{50} é a distância lateral ajustada para uma velocidade de 50 km/h; v_{campo} é a velocidade dos veículos durante a realização das manobras de ultrapassagens observadas; e LD_{campo} é a distância lateral nas manobras de ultrapassagens observadas em campo, a um dada velocidade v_{campo} .

Foram coletadas informações de 31 manobras de ultrapassagens e calculada a LD_{50} correspondente para cada manobra. Então, foi observado que a distribuição das amostras obtidas é melhor representada pela mediana, devido a distribuição ser assimétrica (Triola, 2000), conforme fica demonstrado na Figura 4.10. Assim, o valor LD_{50} adotado é o de 1,12 m para a distância lateral a 50 km/h.

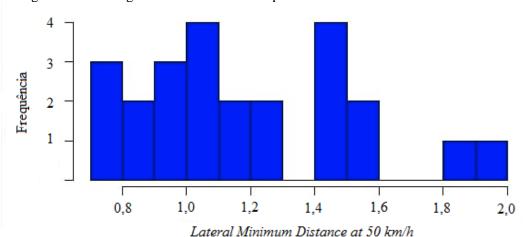


Figura 4.10: Histograma dos resultados do parâmetro lateral minimum distance at 50 km/h

4.3.2 Safety distance reduction factor (lane change) - SafDistFactLnChg

O *SafDistFactLnChg* é um fator de redução da distância de segurança desejada para a realização das mudanças de faixa que é o produto da distância de segurança desejada pelo fator de redução da distância de segurança. O fator pode ser definido como a razão da distância final de aproximação do veículo que realizar a ultrapassagem pela distância mantida pelos veículos em *following*, mas que não desejam realizar ultrapassagens.

Para calibrar esse parâmetro, foram obtidas, das filmagens com drone, as distâncias que os veículos mantiveram quando atrás de outros veículos e foram observadas as distâncias dos veículos que iniciam as ultrapassagens no limite do início da manobra. Os dados observados indicaram uma distância média de 2,76 m e uma mediana de 2,35 quando os veículos estão em *following*. Quando no limite da aproximação para realizar a manobra de ultrapassagem, a média foi de 1,1 m e a mediana de 0,9 m.

Assim, de posse dos dados de distância de segurança desejada e da redução para realização das manobras, foi possível calcular o fator para os veículos observados em campo. O valor *default* é de 0,6, enquanto para os veículos observados foi de 0,36.

4.4 Calibração dos parâmetros com Algoritmo Genético

Nesta seção, são abordados os aspectos relacionados com o desenvolvimento de um AG para calibrar os demais parâmetros comportamentais do VISSIM considerados relevantes para modelagem de rodovias de pista simples: *LookAheadDistMax*, *ObsrvdVehs*, *W99cc1Distr* e *W99cc3*.

O AG é um método iterativo baseado na teoria da evolução que se inicia com a produção de uma população aleatória, gerada a partir de um espaço de busca. Essa população é composta por indivíduos (ou cromossomos) que são formados a partir dos parâmetros comportamentais a serem calibrados. À medida que a população evolui, através da aplicação de operadores genéticos (seleção, *crossover*, mutação e predação), melhores soluções (os indivíduos da população) são encontradas, na tentativa de melhorar a função de adaptação (*fitness*), resultado da comparação entre medidas de desempenho encontradas em campo e obtidas por simulação. Portanto, os indivíduos mais bem adaptados (com melhores valores de *fitness*) tendem a permanecer na população e, assim, transferem as suas características às próximas gerações; enquanto isso, os menos adaptados tendem a desaparecer (Goldberg, 1989; Bessa Jr. e Setti, 2011).

A calibração de parâmetros de calibração é considerada um problema de busca e otimização e, portanto, pode ser aplicado um AG para fazer isso. Na literatura, é possível observar o uso de AG's na calibração de vários simuladores, como AIMSUN (Chiappone, et al., 2016), VISSIM (Yu e Fan, 2017), TWOPAS (Moreno et al., 2016), Paramics (Ma e Abdulhai, 2002) e CORSIM (Kim a Rilett, 2003). No Brasil, é possível encontrar aplicações para rodovias de pista dupla e autoestradas (Cunha e Setti, 2011), para rodovias de pista simples (Bessa Jr. et al., 2017; Bessa Jr. e Setti, 2018) e em meio urbano (Medeiros et al., 2013; Lacerda e Castro-Neto, 2014).

No entanto, alguns trabalhos (Lacerda, 2016; Lacerda e Castro-Neto, 2018) têm apontado que, se um processo de calibração não for bem delineado, parâmetros comportamentais dos simuladores de tráfego podem ter valores de calibração inadequados (agressivos demais, por exemplo). Sendo assim, outros parâmetros calibrados também podem ser inadequados, mas em outro sentido (muito conservadores, por exemplo), na tentativa de compensar os erros atribuídos aos primeiros parâmetros. A aplicação tradicional dos

AG's para calibrar simuladores de tráfego na obtenção dos parâmetros comportamentais são susceptíveis a esse tipo de erro.

O AG aplicado nesta pesquisa é baseado em outro aplicado em estudos anteriores (Bessa Jr. *et al.*, 2017; Bessa Jr. e Setti, 2018), conforme mostrado no fluxograma da Figura 4.11. O processo inicia-se com a criação da população inicial de 10 indivíduos, baseado no intervalo de busca dos parâmetros de calibração que os compõe, com cada um deles associado a um determinado nível de agressividade: baixo, médio e alto. A Tabela 4.4 mostra os valores *default* dos parâmetros de calibração e seus intervalos de busca com base na agressividade.

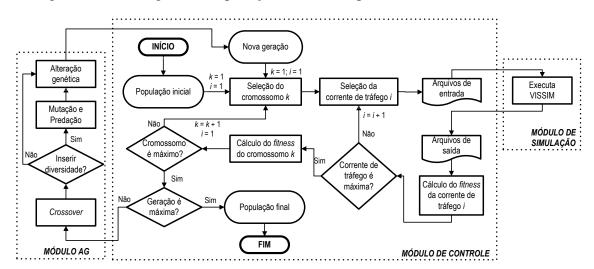


Figura 4.11: Fluxograma de aplicação do AG (adaptado de Bessa Jr. e Setti, 2018)

Tabela 4.4: Valores default dos parâmetros de calibração

		Espaço de busca em função do nível de agressividade										
Parâmetro	Valor <i>default</i>	Ba	aixo	M	édio	Alto						
	исјини	Mínimo	Máximo	Mínimo	Máximo	Mínimo	Máximo					
LookAheadDistMax	250 m	0	167	167	333	333	500					
ObsrvdVehs	2 veíc	0	3	3	7	7	10					
W99cc1Distr	1	20	30	2	20	1	2					
W99cc3	-8,0 s	-16	-10,7	-10,7	-5,3	-5,3	0					

Há uma peculiaridade com o *W99cc1Distr*, em que os valores do parâmetro são estabelecidos a partir de um *menu* previamente estabelecido, que é correspondente ao *headway* médio, em segundos, que os motoristas irão adotar. Então, no espaço de busca com nível de agressividade baixo, os valores possíveis para o parâmetro são 20 ou 30

(número que representam o *headway* médio). No nível de agressividade médio, são 3 valores, 2, 3 ou 20. No nível alto, os valores possíveis são 1 ou 2.

Cada cromossomo representa um conjunto de parâmetros de calibração que são inseridos nos arquivos de entrada de metade das correntes de tráfego de 15 minutos obtidas por filmagens. A outra metade foi usada para realizar a validação do AG e, também, para validar os modelos de tráfego obtidos (Capítulo 5). O grau de adaptação (qualidade) de cada indivíduo da população é determinado por meio de uma função objetivo (*fitness*) escolhida, o somatório dos erros quadráticos (*SE*), que tem, como principal vantagem, penalizar àquelas soluções que produzem grandes erros absolutos. A formulação de *SE* é dada por:

$$SE = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{2} \sum_{w=1}^{2} \left(y_{ijkw} - x_{ijkw} \right)^{2}, \tag{4.2}$$

em que y_{ijkw} é a velocidade média de viagem obtida na simulação, para o trecho filmado i, corrente de tráfego j, sentido de tráfego k (leste ou oeste) e tipo de veículo w (automóvel ou veículo pesado); x_{ijkw} é a velocidade média de viagem obtida em campo, para o trecho filmado i, corrente de tráfego j, sentido de tráfego k e tipo de veículo k; a variável k0 representa a metade dos trechos filmados; e k1 significa o total de correntes de tráfego de 15 minutos do trecho k1.

Se a máxima geração (30) não tiver sido atingida, os operadores genéticos são acionados para produzir uma nova geração da população. O tipo de seleção de dois indivíduos (pais) para realização de cruzamento (*crossover*) é baseado na técnica da roleta (Goldberg, 1989), em que a probabilidade de serem selecionados é função do seu grau de adaptação ao meio (*fitness*). Portanto, quanto menor for o *SE* do indivíduo, mais chance ele tem de ser selecionado para realização de cruzamento. O novo cromossomo de um indivíduo da geração seguinte possui genes (parâmetros de calibração) que são resultados da média aritmética dos genes dos seus pais.

A mutação é a seleção aleatória de genes (parâmetros) da população de modo que eles são substituídos por outros gerados aleatoriamente em função do seu respectivo espaço de busca. A predação significa selecionar os piores indivíduos da população (maiores valores de *SE*) e substituí-los por outros gerados aleatoriamente, também em função do

espaço de busca dos parâmetros de calibração. A mutação e a predação, que possuem, respectivamente, taxas de 30% e 20%, são aplicadas a cada duas gerações, de modo que a diversidade genética inserida possa ser absorvida paulatinamente.

Com a aplicação do *crossover*, é possível que alguns genes dos indivíduos de uma nova geração da população tenham agressividades diferentes daquelas definidas no início do processo de calibração (baixo, médio ou alto). Nesses casos, cada gene deverá ser substituído por um outro produzido aleatoriamente com base no espaço de busca, de acordo com seu nível de agressividade. A esse processo foi denominado "alteração genética" (Baluja, 1994; Bean, 1994).

A proposta desta pesquisa, em relação àquela em que foi baseada (Bessa Jr. *et al.*, 2017; Bessa Jr. e Setti, 2018), tiveram duas principais alterações. A primeira é que o *crossover* passou a ser do tipo "média" com seleção a partir do "método da roleta" – ao invés de ser baseado em "máscara aleatória" e na seleção por elitismo (ver mais detalhes em Bessa Jr., 2015). Outra alteração é a inclusão da "alteração genética" como um novo operador do AG.

Usando-se os valores *default* dos parâmetros de calibração (Tabela 4.4), foi encontrado um valor de *SE* igual a 10.603. Com a aplicação da melhor solução encontrada com o AG (Tabela 5.6), obteve-se um valor de *SE* de 9.528, que é 10% menor do que quando usado os valores *default* dos parâmetros. Foi realizado um processo de validação ao testar a melhor solução encontrada na etapa de calibração. Nesse caso, o valor de *SE* encontrado foi de 15.001, valor que é 4% menor que o encontrado a partir dos parâmetros *default*, que foi igual a 15.635.

Tabela 4.5: Melhor conjunto de parâmetros encontrados pelo AG

Parâmetro	Valor obtido pelo AG
LookAheadDistMax	419 m
ObsrvdVehs	7 veículos
W99cc1Distr	1
W99cc3	-2,6 s

A aplicação do AG apresentou apenas uma leve melhora em relação à utilização dos parâmetros default. Isso pode ser justificado em função da quantidade pequena de parâmetros a serem calibrados. Além disso, o processo de ajuste dos parâmetros já havia sido iniciado, com a calibração das curvas de velocidades desejadas, com a calibração dos modelos de desempenho dos veículos pesados e com a obtenção de dois parâmetros em campo a partir de filmagens com Drone – LatDistDrivDef e SafDistFactLnChg. Com relação aos resultados dos parâmetros calibrados pelo AG, todos os valores foram considerados mais agressivos dos que os valores default do VISSIM. A exceção ficou por conta do W99cc1Distr, que permaneceu com o mesmo valor default do VISSIM.

5 MODELOS DE TRÁFEGO

Conforme discutido no Capítulo 2, autores como Moreno *et al.* (2014), Bessa Jr. (2015) e Washburn *et al.* (2018) têm indicado a densidade de veículos em pelotões (*FD*) como medida de desempenho que pode ser usada no cálculo do nível de serviço e da capacidade de rodovias de pista simples. Além disso, o HCM 6 utilizará essa medida de desempenho no novo método voltado para esse tipo de rodovia (Washburn *et al.*, 2018). Assim, entende-se que é pertinente utilizar *FD* para elaborar os modelos de tráfego desta pesquisa, cuja formulação é:

$$FD = \frac{PF}{100} \cdot \frac{q}{ATS} \,, \tag{5.1}$$

em que, PF é a porcentagem de veículos em pelotões; q é o fluxo de tráfego (veic/h); e ATS é a velocidade média de viagem (km/h).

Nesta seção, são apresentados os resultados dos modelos propostos para análise dos segmentos com faixa adicional de subida e com zonas de ultrapassagens proibidas. Além desses modelos, também são necessários obter modelos de tráfego para condições sem faixas adicionais e sem zonas de ultrapassagens proibidas. O capítulo apresenta também a proposta de classificação dos trechos, com base no alinhamento vertical. Ao final do capítulo, também são comparados os resultados obtidos em campo com o modelo proposto e com outros modelos encontrados na literatura, como o de Bessa Jr. (2015) e manuais do HCM (TRB, 2010; Washburn *et al.*, 2018).

5.1 Classificação dos alinhamentos vertical e horizontal

No manual alemão HBS 2001, para a estimação do nível de serviço, o efeito da declividade e do comprimento de rampas é representado por uma variável aqui chamada "classe da rampa" (COG), definida por meio do impacto na velocidade de um "veículo pesado de projeto" nessas rampas. De forma semelhante à metodologia utilizada no HBS 2001, os alinhamentos vertical e horizontal são organizados em cinco classificações na possível nova proposta de análise de rodovias de pista simples do HCM 2016 (Washburn *et al.*, 2018). Essas classificações são baseadas na redução da velocidade de fluxo livre (*FFS*) de um veículo pesado típico devido a mudança no alinhamento. Na tabela 5.1, são

apresentadas as reduções da FFS usadas para definir a classificação do alinhamento vertical.

Tabela 5.1: Reduções na FFS de veículos pesados usadas para classificar alinhamentos verticais

Classificação	Redução na FFS do veículo
	pesado (km/h)
1	< 7
2	≥7 – 14
3	$\geq 14 - 21$
4	\geq 21 – 28
5	≥ 28

O veículo pesado típico escolhido para esta pesquisa, a fim de obter a classificação das rampas em função do alinhamento vertical, tem relação massa potência de 175 kg/kW, que representa, aproximadamente, o 85° percentil da distribuição de relações massapotência da amostra de caminhões obtida em campo (Capítulo 4). A velocidade inicial de 105 km/h é a mesma escolhida nos experimentos para o HCM 6 (Washburn *et al.*, 2018). Assim, com o uso do VISSIM, estimou-se as reduções no *FFS* para o veículo pesado de projeto. Os modelos de simulação foram elaborados com um trecho em tangente e plano para que possibilitasse ao veículo pesado de projeto alcançar a velocidade desejada média (aqui considerada como *FFS*) de 105 km/h (com desvio padrão dessa velocidade desejada igual a zero). Então, foram realizadas alterações na geometria do segmento seguinte, com rampas ascendentes e descendentes. Foi observada a redução de velocidade para cada caso e elaborada a Tabela 5.2, com base na Tabela 5.1, para a classificação do alinhamento vertical.

Tabela 5.2: Classificação do alinhamento vertical

		1	auci	a 5.2	,. C1	ussiii	icaça	io uo	ann	mam	CIITO	V CI t	icai					
Comprimento								F	Ramp	oa (%	(o)							
do segmento	1	-1	2	-2	3	-3	4	-4	5	-5	6	-6	7	-7	8	-8	9	-9
(m)							Cl	asse (da ra	ımpa	(CC	OG)						
≤ 200	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2
≥ 200 < 400	1	1	1	1	2	2	2	2	2	1	3	2	3	3	4	3	4	4
≥ 400 < 600	1	1	2	2	2	2	3	3	4	4	4	4	5	5	5	4	5	5
≥ 600 < 800	1	1	2	2	3	2	4	4	5	4	5	5	5	5	5	4	5	5
≥ 800 < 1000	2	2	3	3	4	3	5	4	5	4	5	5	5	5	5	5	5	5
≥ 1000 < 1200	2	2	3	3	4	3	5	4	5	4	5	5	5	5	5	5	5	5
≥ 1200 < 1400	2	2	3	3	5	4	5	5	5	5	5	4	5	5	5	5	5	5
≥ 1400 < 2400	3	3	5	5	5	4	5	5	5	5	5	5	5	5	5	5	5	5
≥ 2400	3	3	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5

5.2 Relação fluxo-FD sem faixas adicionais e sem proibição de ultrapassagens (modelos base)

A Tabela 5.2, com os valores de COG do alinhamento vertical, orientou a elaboração de trechos hipotéticos de simulação para gerar modelos que correlacionem fluxo de tráfego e FD unidirecionais. Foram gerados 10 segmentos viários hipotéticos de 10 km para cada categoria de COG's, alternando-se segmentos de subida e de descida, com a inclinação e o comprimento dos modelos definidos aleatoriamente de acordo com a Tabela 5.2. Os trechos hipotéticos foram usados para gerar modelos: (i) sem faixas adicionais e sem proibição de ultrapassagens (aqui denominados de "modelos base"); (ii) com faixas adicionais; e (iii) com zonas de ultrapassagens proibidas. Esta seção refere-se à primeira categoria de modelos de tráfego. Na Tabela 5.3, é possível verificar exemplos de trechos hipotéticos, com comprimento e rampa dos subtrechos, para cada COG. Os demais 9 trechos para cada COG são apresentados no Apêndice B.

Tabela 5.3: Modelos de geometria hipotética para geração de dados sintéticos

CO	OG 1	CC	OG 2	CC	OG 3	CC	OG 4	COG 5		
Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	
(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)	
1	467	1	429	2	1295	4	458	9	847	
-4	57	-1	1058	-6	223	-5	690	-9	1389	
1	742	9	95	2	1015	5	485	9	670	
-2	238	-1	1105	-1	1195	-4	536	-7	1451	
1	689	3	551	7	324	6	401	9	482	
-1	723	-8	93	-6	339	-8	329	-9	1123	
1	691	4	304	1	933	3	993	7	581	
0	244	-8	67	-2	1311	-4	1121	-7	1020	
1	771	2	228	2	787	3	666	9	519	
0	596	-1	1284	-6	400	-2	1247	-7	1918	
1	627	0	1044	5	343	4	668			
0	572	-1	1386	-1	1529	-9	264			
1	540	8	134	6	306	8	276			
0	572	-2	492			-3	1011			
1	468	0	1123			3	855			
-1	772	2	607							
1	446									
-4	34									
0	629									
-1	122									
Total (m)	10.000	Total (m)	10.000	Total (m)	10.000	Total (m)	10.000	Total (m)	10.000	

Importante ressaltar que a FD de um segmento deverá ser calculada em função da média ponderada dos FDs dos subsegmentos, com o peso sendo o comprimento do trecho, a exemplo de como ocorre no HCM 6, conforme a equação:

$$FD_{d} = \frac{\sum_{i=1}^{n} FD_{i}.C_{i}}{\sum_{i=1}^{n} C_{i}},$$
(5.2)

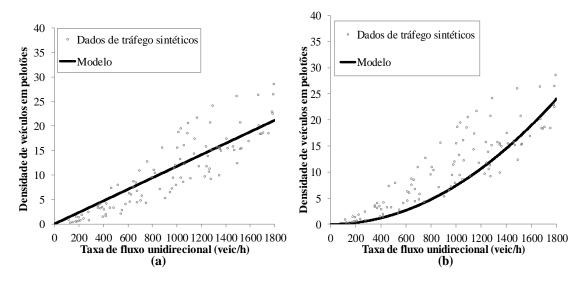
em que FD_d é a densidade de veículos em pelotões direcional do segmento de análise e n é o número de subsegmentos.

A velocidade de fluxo livre direcional (*FFS_d*) foi simulada de 70 a 110 km/h, variandose de 10 em 10 km/h. Para inserir a informação no VISSIM, foram geradas distribuições acumuladas hipotéticas para a velocidade desejada a partir da distribuição das velocidades desejadas médias dos veículos foram dos pelotões encontrados em campo, para os trechos em que foram realizadas as filmagens. Então, mantendo-se o coeficiente de variação dessa distribuição acumulada, foram estabelecidas as distribuições de velocidade desejada no VISSIM para 70 km/h, 80 km/h, 90 km/h, 100 km/h e 110 km/h (valores que são considerados os 50° percentis de cada distribuição).

Para as porcentagens de veículos pesados (P_{hv}), foram considerados de 0% a 50% da corrente de tráfego, variando-se de 10% em 10%. As categorias de veículos pesados (leves, médios, pesados e extrapesados) foram as mesmas obtidas do campo e detalhadas no Capítulo 4. Considerando as cinco categorias de alinhamento vertical, foram realizadas, portanto, 5 x 6 x 5 = 150 relações fluxo-FD unidirecionais. Para produzir cada um desses modelos, foram simuladas 100 correntes de tráfego, o que resultou em 100 x 150 = 15.000 simulações no total.

Como o HCM 6 (Washburn *et al.*, 2018) e o modelo proposto por Bessa Jr. (2015) adotam a análise unidirecional, nesta pesquisa se optou por manter essa lógica. Foram testados dois modelos entre o fluxo e *FD* direcionais (sem faixas adicionais e sem proibição de ultrapassagens): um quadrático (Equação 5.3) e um linear (Equação 5.4).

$$FD_d = a.q_d^2, (5.3)$$


$$FD_d = a.q_d, (5.4)$$

em que FD_d é a densidade de veículos em pelotões em veic/km, a é o parâmetro de calibração do modelo, e q_d é o fluxo direcional em veic/h.

A Figura 5.1 apresenta os resultados obtidos com os dados sintéticos para COG = 1, P_{hv} = 0%, FFS = 70 km/h, cujo R^2 foi de 0,9291 para o modelo linear e R^2 de 0,92708 para o modelo quadrático, entre fluxo e FD direcional. Nas Tabelas 5.4 e 5.5, é possível verificar os parâmetros encontrados para os modelos linear e quadrático, respectivamente. Os valores intermediários de a para valores de P_{hv} e FFS_d diferentes dos apresentados nas Tabelas 5.6 e 5.7 devem ser obtidos por meio de interpolação linear.

Figura 5.1: Relação fluxo- FD_d obtidas para para COG = 1, P_{hv} = 0%, FFS = 70 km/h dos modelos linear (a) e quadrático (b)

A partir do Modelo Base da FD_d , partiu-se para a avaliação das faixas adicionais de subida e das zonas de ultrapassagem proibidas. Deve-se, portanto, ajustar o modelo básico para FD_d em função do impacto dessas duas variáveis. Então, o modelo passa a ser definido como segue na Equação 5.5, tanto para o modelo linear como para o modelo quadrático. As próximas seções detalham os resultados obtidos com a obtenção desses fatores de ajuste.

$$FD_d = a.q_d - f_{fa} + f_{npz},$$
 (5.5)

em que f_{fa} é o fator de ajuste para as faixas adicionais de subida; f_{npz} é o fator de ajuste para o percentual de zonas ultrapassagens proibidas.

		Та	abela 5.4	: Parâmeti	ros do Mo	delo Base	de FD_d line	ear		
					Phv = 0%	6				
FFS (km/h)	CO	G = 1	CC	G = 2	CC	OG = 3	COC	G = 4	COG	$\frac{1}{2} = 5$
	a	R ²	a	R ²	a	R ²	a	R ²	a	R ²
70	0,0118	0,9291	0,0105	0,9537	0,0116	0,9586	0,0183	0,9578	0,0188	0,9660
80	0,0111	0,9284	0,0098	0,9630	0,0107	0,9665	0,0172	0,9569	0,0176	0,9671
90	0,0106	0,9288	0,0094	0,9643	0,0102	0,9681	0,0164	0,9582	0,0166	0,9665
100	0,0100	0,9288	0,0090	0,9654	0,0097	0,9662	0,0156	0,9604	0,0159	0,9664
110	0,0098	0,9294	0,0088	0,9664	0,0094	0,9652	0,0150	0,9593	0,0153	0,9652
					$P_{hv}=10\%$	%				
FFS (km/h)	CO	G = 1	CC	G = 2	CC	OG = 3	COC	G = 4	COG	G = 5
	a	R^2	a	R^2	a	R^2	a	R^2	a	R^2
70	0,0128	0,9519	0,0108	0,9757	0,0121	0,9721	0,0182	0,9642	0,0180	0,9710
80	0,0123	0,9543	0,0104	0,9761	0,0116	0,9784	0,0174	0,9681	0,0172	0,9724
90	0,0117	0,9541	0,0100	0,9770	0,0111	0,9763	0,0169	0,9665	0,0170	0,9722
100	0,0112	0,9492	0,0095	0,9750	0,0106	0,9747	0,0162	0,9714	0,0164	0,9724
110	0,0112	0,9539	0,0095	0,9761	0,0106	0,9766	0,0160	0,9743	0,0159	0,9708
					$P_{hv} = 20\%$	/ 6				
FFS (km/h)	CO	G = 1	CC	G = 2	CC)G = 3	COC	G = 4	COG	3 = 5
	a	R^2	a	R^2	a	R^2	a	R^2	a	R^2
70	0,0129	0,9602	0,0111	0,9794	0,0125	0,9715	0,0183	0,9838	0,0184	0,9858
80	0,0123	0,9618	0,0106	0,9834	0,0117	0,9842	0,0179	0,9866	0,0181	0,9882
90	0,0121	0,9635	0,0105	0,9825	0,0115	0,9824	0,0175	0,9848	0,0175	0,9858
100	0,0116	0,9600	0,0100	0,9826	0,0110	0,9818	0,0166	0,9843	0,0169	0,9849
110	0,0114	0,9602	0,0098	0,9833	0,0108	0,9834	0,0161	0,9845	0,0163	0,9835
	· · ·	·		<u> </u>	$P_{hv} = 30\%$	%		<u> </u>		· · ·
FFS (km/h)	CO	G = 1	CC	G = 2		OG = 3	COC	G = 4	COG	G = 5
, ,	a	R^2	a	R^2	a	R^2	a	R^2	a	R^2
70	0,0134	0,9644	0,0113	0,9696	0,0124	0,9888	0,0173	0,9662	0,0172	0,9854
80	0,0128	0,9653	0,0108	0,9790	0,0120	0,9903	0,0173	0,9884	0,0168	0,9850
90	0.0126	0,9669	0,0107	0,9796	0,0119	0,9902	0,0170	0,9881	0,0164	0,9837
100	0,0123	0,9656	0,0103	0,9790	0,0115	0,9892	0,0163	0,9858	0,0161	0,9838
110	0,0119	0,9652	0,0100	0,9772	0,0112	0,9896	0,0159	0,9852	0,0157	0,9821
		,	,	,	Phv = 40			,		,
FFS (km/h)	CO	G = 1	CC	G = 2		OG = 3	COC	G = 4	COG	1 = 5
~ ()	a	R^2	a	R^2	a	R^2	a	R^2	a	R^2
70	0,0126	0,9613	0,0112	0,9802	0,0121	0,9818	0,0168	0,9707	0,0157	0,9850
80	0,0121	0,9618	0,0107	0,9827	0,0116	0,9847	0,0168	0,9876	0,0155	0,9855
90	0,0118	0,9629	0,0105	0,9821	0,0113	0,9845	0,0166	0,9912	0,0153	0,9875
100	0,0116	0,9641	0,0103	0,9822	0,0113	0,9852	0,0161	0,9893	0,0150	0,9865
110	0,0113	0,9647	0,0102	0,9815	0,0111	0,9842	0,0157	0,9869	0,0136	0,9842
110	0,0113	0,2047	0,0100	0,7013	$P_{hv} = 50\%$		0,0157	0,7007	0,0173	0,7072
FFS (km/h)	CO	G = 1	CC	G = 2		$\mathbf{OG} = 3$	COG = 4		COG	2 – 5
115 (MII/II)	a	R^2	a	R^2	a	R^2	a	R^2	a	R^2
70	0,0124	0,9605	0,0109	0,9753	0,0120	0,9836	0,0150	0,9582	0,0142	0,9912
80	0,0124	0,9603	0,0109	0,9733	0,0120	0,9830	0,0130	0,9382	0,0142	0,9912
ου	0,0124	0,901/	0,0103	0,7031	0,0110	0,3303	0,0149	0,9040	0,0142	0,9911

90

100

0,0122 0,9646 0,0104

0,0119 0,9634 0,0101

0,9821

0,9810

0,0114

0,0111

0,9910

0,9903

0,9922

0,9908

0,0141

0,0138

0,9696

0,9717

0,0149

0,0145

110 0,0116 0,9635 0,0099 0,9808 0,0109 0,9895 0,0140 0,9677 0,0133 0,9894

Tabela 5.5: Parâmet	ros do Modelo	Base de F	FD_d quadrático
---------------------	---------------	-----------	-------------------

80 0 90 0 100 0	COG = a	= 1 R ²	COG =	= 2	$\frac{P_{hv} = 0\%}{\text{COG}} =$	= 3	COG =	= 4	COG =	= 5	
80 0 90 0 100 0		R^2	a	D2					COG = 5		
80 0 90 0 100 0),0000074			R^2	a	R^2	a	R^2	a	R^2	
90 0 100 0		0,9271	0,0000063	0,9460	0,0000069	0,9613	0,0000116	0,9886	0,0000117	0,9871	
100 0	0,0000071	0,9288	0,0000060	0,9648	0,0000065	0,9746	0,0000109	0,9895	0,0000109	0,9884	
	0,0000068	0,9336	0,0000058	0,9678	0,0000063	0,9780	0,0000104	0,9889	0,0000104	0,9884	
110	0,0000065	0,9382	0,0000057	0,9722	0,0000060	0,9817	0,0000100	0,9900	0,0000099	0,9884	
110 0	0,0000064	0,9410	0,0000056	0,9737	0,0000059	0,9820	0,0000096	0,9891	0,0000096	0,9880	
				P	$P_{hv} = 10\%$						
FFS (km/h)	COG =	= 1	COG = 2		COG =	= 3	COG =	= 4	COG = 5		
	a	R^2	a	R^2	a	\mathbb{R}^2	a	R^2	a	R^2	
70 0	0,0000082	0,9440	0,0000069	0,9709	0,0000077	0,9755	0,0000114	0,9757	0,0000115	0,9858	
80 0	0,0000079	0,9462	0,0000067	0,9711	0,0000074	0,9808	0,0000109	0,9757	0,0000110	0,9845	
90 0	0,0000077	0,9487	0,0000066	0,9740	0,0000073	0,9825	0,0000108	0,9780	0,0000110	0,9855	
100 0	0,0000073	0,9506	0,0000063	0,9780	0,0000070	0,9857	0,0000103	0,9813	0,0000106	0,9853	
110 0	0,0000073	0,9510	0,0000063	0,9755	0,0000070	0,9830	0,0000102	0,9770	0,0000104	0,9865	
				P	$P_{hv} = 20\%$						
FFS (km/h)	COG =	= 1	COG =	= 2	COG =	= 3	COG =	= 4	COG =	= 5	
	a	R^2	a	R^2	a	R^2	a	R^2	a	R^2	
70 0	0,0000083	0,9392	0,0000070	0,9549	0,0000078	0,9522	0,0000112	0,9738	0,0000115	0,9770	
80 0	0,0000080	0,9384	0,0000067	0,9615	0,0000074	0,9597	0,0000110	0,9742	0,0000113	0,9753	
90 0	0,0000080	0,9416	0,0000067	0,9605	0,0000074	0,9606	0,0000109	0,9741	0,0000111	0,9769	
100 0	0,0000078	0,9474	0,0000065	0,9680	0,0000071	0,9662	0,0000103	0,9770	0,0000107	0,9776	
110 0	0,0000077	0,9461	0,0000064	0,9647	0,0000071	0,9653	0,0000100	0,9757	0,0000103	0,9781	
				P	$P_{hv} = 30\%$						
FFS (km/h)	COG =	= 1	COG = 2		COG = 3		COG =	= 4	COG =	= 5	
	a	R^2	a	R^2	a R^2		a R^2		a R		
70 0	0,0000082	0,9429	0,0000075	0,9499	0,0000073	0,9683	0,0000101	0,9425	0,0000114	0,9718	
80 0	0,0000079	0,9429	0,0000072	0,9595	0,0000072	0,9703	0,0000101	0,9724	0,0000111	0,9708	
90 0	0,0000079	0,9448	0,0000072	0,9606	0,0000072	0,9695	0,0000100	0,9717	0,0000110	0,9731	
100 0	0,0000077	0,9485	0,0000070	0,9633	0,0000070	0,9731	0,0000096	0,9733	0,0000107	0,9707	
110 0	0,0000075	0,9505	0,0000068	0,9641	0,0000068	0,9746	0,0000095	0,9757	0,0000105	0,9732	
				P	$P_{hv} = 40\%$						
FFS (km/h)	COG =	= 1	COG =	= 2	COG =	= 3	COG =	= 4	COG =	= 5	
	a	R^2	a	R^2	a	R^2	a	R^2	a	R^2	
70 0	0,0000082	0,9180	0,0000073	0,9665	0,0000078	0,9523	0,0000101	0,9426	0,0000102	0,9648	
80 0	0,0000079	0,9174	0,0000070	0,9662	0,0000074	0,9504	0,0000100	0,9672	0,0000101	0,9646	
90 0	0,0000077	0,9213	0,0000069	0,9687	0,0000074	0,9550	0,0000101	0,9670	0,0000100	0,9625	
100 0	0,0000076	0,9252	0,0000068	0,9680	0,0000073	0,9576	0,0000097	0,9670	0,0000099	0,9623	
110 0	0,0000075	0,9279	0,0000067	0,9694	0,0000071	0,9572	0,0000096	0,9687	0,0000096	0,9633	
				Pl	hv = 50%						
EEC (less/le)	COG =	= 1	COG =	= 2	COG =	= 3	COG =	= 4	COG = 5		
FFS (km/h)	a	R^2	a	R^2	a	R^2	a	R^2	a	R^2	
rrs (km/n)											
	0,0000080	0,9507	0,0000069	0,9430	0,0000074	0,9513	0,0000088	0,9266	0,0000089	0,9590	

90	0,0000077	0,9524	0,0000066	0,9496	0,0000072	0,9576	0,0000089	0,9351	0,0000090	0,9600
100	0,0000075	0,9550	0,0000065	0,9515	0,0000071	0,9603	0,0000087	0,9370	0,0000088	0,9597
110	0,0000074	0,9552	0,0000064	0,9539	0,0000070	0,9609	0,0000084	0,9375	0,0000085	0,9610

5.3 Determinação do impacto das faixas adicionais de subida

Para avaliação do impacto das faixas adicionais de subida, foi considerada a avaliação realizada por Melo (2007), que indica critérios para a implantação de faixa adicional para as condições encontradas em rodovias brasileiras, conforme abordado no Capítulo 2.Dentre as recomendações, estão as características dos segmentos que justificam a implantação de faixas adicionais de subida, que são comprimento mínimo de 500 m e inclinação mínima de 2% (Melo, 2007). Então, adotando-se essa premissa, foram criadas faixas adicionais de subida nos segmentos hipotéticos elaborados para os modelos base.

A partir desse critério, não foi identificada a necessidade de implantação de faixa adicional de subida em nenhum trecho com COG = 1, pois o desempenho dos caminhões é menos afetado pelas rampas, que, por consequência, são mais suaves ou curtas que a das outras classes de alinhamento vertical. A Tabela 5.6 exemplifica a implantação de faixas adicionais em um dos trechos hipotéticos do COG 5, e os demais segmentos podem ser vistos no Apêndice B.

Tabela 5.6: Subtrechos hipotéticos indicados para implantação de faixa adicional para um trecho hipotético com COG = 5

	Trecho Hipotético COG 5 (V-	-10)
Rampa (%)	Extensão (m)	Implantação de faixa adicional?
9	1565	Sim
-7	520	Não
3	1239	Sim
-9	501	Não
4	677	Sim
-7	1131	Não
9	857	Sim
-9	633	Não
9	688	Sim
-9	404	Não
7	1785	Sim
Total (m)	10.000	

Tabela 5.7: Fatores de ajuste para faixas adicionais de Subida - COG 5

	Λ.		Phv (%)	20	10	50
	0	10	20	30	40	50
q _d (veic/h)				70km/h		
200	0,7685	0,6940	0,8963	0,8071	0,6369	0,478
400	1,5371	1,3879	1,7927	1,6143	1,2738	0,956
600	2,3056	2,0819	2,6890	2,4214	1,9108	1,435
800	3,0742	2,7758	3,5854	3,2285	2,5477	1,913
1000	3,8427	3,4698	4,4817	4,0357	3,1846	2,391
1400	5,3798	4,8577	6,2744	5,6500	4,4585	3,348
1600	6,1483	5,5517	7,1707	6,4571	5,0954	3,826
1800	6,9168	6,2456	8,0671	7,2642	5,7323	4,305
$q_d(veic/h)$			$FFS_d =$	80 km/h		
200	0,6952	0,7243	0,9569	0,8396	0,6794	0,539
400	1,3904	1,4486	1,9137	1,6793	1,3588	1,078
600	2,0855	2,1729	2,8706	2,5189	2,0382	1,618
800	2,7807	2,8972	3,8274	3,3585	2,7176	2,157
1000	3,4759	3,6215	4,7843	4,1981	3,3970	2,697
1400	4,8662	5,0701	6,6980	5,8774	4,7557	3,776
1600	5,5614	5,7944	7,6548	6,7170	5,4351	4,315
1800	6,2566	6,5187	8,6117	7,5567	6,1145	4,855
$q_d(veic/h)$	0,2300	0,5107		90 km/h	0,1143	7,033
$\frac{q_a(veic/n)}{200}$	0.6569	0,8029	0,9633	0,8532	0,7051	0,581
	0,6568					
400	1,3136	1,6058	1,9267	1,7064	1,4103	1,162
600	1,9703	2,4087	2,8900	2,5596	2,1154	1,744
800	2,6271	3,2116	3,8534	3,4128	2,8205	2,325
1000	3,2839	4,0144	4,8167	4,2660	3,5257	2,906
1400	4,5975	5,6202	6,7434	5,9724	4,9360	4,069
1600	5,2542	6,4231	7,7068	6,8256	5,6411	4,651
1800	5,9110	7,2260	8,6701	7,6789	6,3462	5,232
$q_d(veic/h)$	0.6204	0.000		100 km/h	0.5004	0.7.60
200	0,6391	0,8036	0,9028	0,8535	0,7004	0,568
400	1,2782	1,6071	1,8055	1,7070	1,4008	1,137
600	1,9174	2,4107	2,7083	2,5605	2,1013	1,706
800	2,5565	3,2142	3,6110	3,4140	2,8017	2,274
1000	3,1956	4,0178	4,5138	4,2675	3,5021	2,843
1400	4,4738	5,6249	6,3193	5,9744	4,9030	3,981
1600	5,1130	6,4284	7,2221	6,8279	5,6034	4,549
1800	5,7521	7,2320	8,1248	7,6814	6,3038	5,118
q _d (veic/h)			$FFS_d = 1$	110 km/h		
200	0,6121	0,8005	0,8632	0,8538	0,6626	0,547
400	1,2241	1,6011	1,7264	1,7076	1,3252	1,095
600	1,8362	2,4016	2,5896	2,5614	1,9878	1,643
800	2,4482	3,2021	3,4528	3,4152	2,6504	2,190
1000	3,0603	4,0026	4,3160	4,2691	3,3130	2,738
1400	4,2844	5,6037	6,0424	5,9767	4,6382	3,833
1600	4,8964	6,4042	6,9056	6,8305	5,3008	4,381
1800	5,5085	7,2048	7,7688	7,6843	5,9635	4,929

Partindo das mesmas premissas utilizadas para gerar a FD base, foram realizadas novas simulações para cálculo do modelo de densidade de veículos em pelotões com os trechos com faixas adicionais de subida (FD_{fas}). Novamente, foram realizadas regressões para

validar o modelo de faixa adicional de subida. O modelo de faixa adicional tem a mesma formulação do modelo básico da FD_d , entretanto possui os parâmetros de calibração a específicos para os segmentos com faixa adicional e são apresentados com o resultado R^2 no Apêndice C. Após a obtenção dos parâmetros a dos modelos com faixas adicionais obtidos por meio de regressão, foram calculados o fator de ajuste para as faixas adicionais de subida f_{fa} , que consistem na diferente entre a FD_d base pela FD_{fas} , como ilustra a Equação 5.6, para diferentes combinações de COG, FFS_d e P_{hv} .

$$f_{fa} = FD_d - FD_{fas}, (5.6)$$

A Tabela 5.7 apresenta o f_{fa} para o COG 5 do modelo linear. Os valores intermediários de f_{fa} para valores de P_{hv} e FFS_d diferentes dos apresentados na Tabela 5.7 devem ser obtidos por meio de interpolação linear. Para outros valores de COG do modelo linear e para o modelo quadrático, os f_{fa} são apresentados no Apêndice D.

Destaca-se que o efeito das faixas adicionais de subida variou de acordo com o COG, sendo mais evidente em diferentes combinações dos parâmetros do modelo. Para o COG = 2, a faixa adicional apresentou pouca influência no resultado da FD_d , com os dois modelos demonstrando pouca efetividade da faixa adicional para essa categoria de alinhamento vertical. No modelo quadrático, a maior redução na FD_d foi obtida com P_{hv} = 20% para todas as FFS_d . No modelo linear, a faixa adicional reduziu mais a FD_d nas condições de P_{hv} = 50% para as FFS_d = 110 km/h e FFS_d = 70km/h. Para as FFS_d = 80 km/h, FFS_d = 90 km/h e FFS_d = 100 km/h, os maiores fatores de ajuste foram com P_{hv} = 30%.

Para COG = 3 e P_{hv} = 0%, não foi observada uma redução de FD_d para nenhum valor de FFS_d . Com o P_{hv} = 40%, foram obtidos os maiores efeitos na redução do FD_d . Os resultados menos expressivos obtidos com o COG = 4 também foram para P_{hv} = 0%, para todas as FFS_d . Os maiores f_{fa} foram observados para P_{hv} = 20%, com exceção da FFS_d = 110km/h do modelo linear, em que o maior efeito foi observado com P_{hv} = 30%.

Com COG = 5, os maiores f_{fa} foram percebidos com P_{hv} = 20%, com exceção da FFS_d . = 110 km/h do modelo quadrático, em que o maior efeito foi observado com P_{hv} = 30%.

Para todas as FFS_d de ambos modelos, os menores impactos foram registrados com $P_{hv} = 50\%$

De modo geral, pode-se perceber que, com um P_{hv} muito elevado, o f_{fa} é menor do que com P_{hv} 's menores, isto é, com P_{hv} 's muito elevados a densidade de veículos em pelotões é menos influenciada pela faixa adicional. Por outro lado, para diferentes valores de P_{hv} e valores de COG muito baixos, a faixa adicional não produz grandes efeitos na redução de FD_d . Esses resultados podem ser observados nas Figuras 6.7 a 6.10, que também consolidam os resultados das Zonas de Ultrapassagens Proibidas (NPZ) e são apresentadas na sequência.

5.4 Determinação do impacto das zonas de ultrapassagens proibidas

Para avaliação do impacto das zonas de ultrapassagens proibidas, foram criados segmentos com 50% e 100% de zonas de ultrapassagens proibidas (NPZ) nos 50 segmentos hipotéticos elaborados para os modelos base. Na análise com 50% de zonas de ultrapassagens proibidas, os segmentos com proibição de ultrapassagens foram posicionados nos vales dos trechos hipotéticos entre as subidas e descidas, pois o VISSIM não permite que o motorista realize ultrapassagens sem visibilidade do sentido oposto (PTV, 2018), o que pode ser o caso no final de rampas muito íngremes. Dessa forma, optou-se por posicionar as zonas de ultrapassagens proibidas em segmentos em que há visibilidade para capturar o comportamento do motorista quando a razão da zona de ultrapassagem proibida não é a visibilidade.

Partindo das mesmas premissas utilizadas para gerar a FD base, foram realizadas novas simulações para cálculo do modelo de FD_d com 50% e 100% de zonas de ultrapassagens proibidas para cada categoria de COG, gerando assim o modelo da FD_{npz} . Novamente, os modelos de zonas de ultrapassagens proibidas têm a mesma formulação do modelo básico da FD_d ; entretanto, possui os parâmetros de calibração a específicos para os segmentos com zonas de ultrapassagens proibidas e são apresentados com o resultado R^2 no Apêndice C.

Tabela 5.8: Fator de Ajuste FD_d com NPZ = 50%, COG = 4

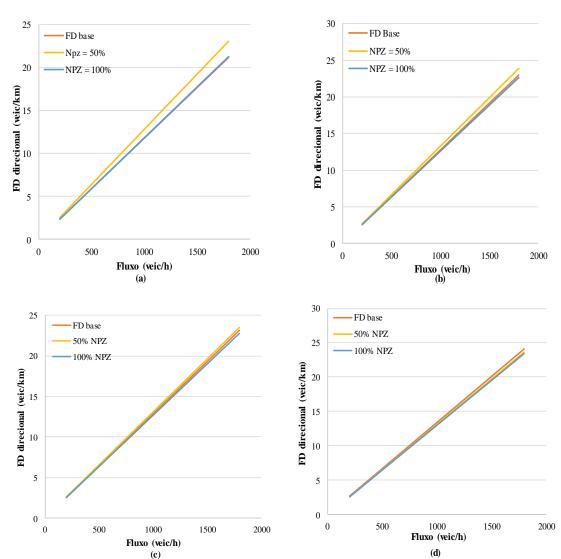
	Phv (%)												
		0	1	0	2	20	3	80	4	10	5	50	
NPZ	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%	
$q_d(veic/h)$						$FFS_d =$	70 km/h						
200	0,5586	1,1781	0,3936	0,9374	0,2565	0,6192	0,1405	0,4591	0,0934	0,3265	0,0933	0,3502	
400	1,1172	2,3563	0,7873	1,8747	0,5131	1,2384	0,2810	0,9183	0,1867	0,6531	0,1865	0,7004	
600	1,6758	3,5344	1,1809	2,8121	0,7696	1,8576	0,4215	1,3774	0,2801	0,9796	0,2798	1,0506	
800	2,2344	4,7126	1,5746	3,7494	1,0261	2,4768	0,5620	1,8365	0,3734	1,3062	0,3731	1,4007	
1000	2,7930	5,8907	1,9682	4,6868	1,2827	3,0959	0,7025	2,2956	0,4668	1,6327	0,4663	1,7509	
1400	3,9103	8,2470	2,7555	6,5615	1,7957	4,3343	0,9834	3,2139	0,6535	2,2858	0,6529	2,4513	
1600	4,4689	9,4251	3,1492	7,4988	2,0522	4,9535	1,1239	3,6730	0,7468	2,6124	0,7462	2,8015	
1800	5,0275	10,6032	3,5428	8,4362	2,3088	5,5727	1,2644	4,1321	0,8402	2,9389	0,8394	3,1517	
$q_d(veic/h)$						$FFS_d =$	80 km/h						
200	0,5658	1,1152	0,3621	0,8585	0,1793	0,5014	0,1121	0,3991	0,0816	0,2921	0,0335	0,2759	
400	1,1317	2,2303	0,7242	1,7169	0,3586	1,0027	0,2241	0,7983	0,1633	0,5841	0,0671	0,5519	
600	1,6975	3,3455	1,0863	2,5754	0,5379	1,5041	0,3362	1,1974	0,2449	0,8762	0,1006	0,8278	
800	2,2634	4,4606	1,4484	3,4338	0,7172	2,0055	0,4482	1,5966	0,3266	1,1683	0,1341	1,1037	
1000	2,8292	5,5758	1,8105	4,2923	0,8965	2,5069	0,5603	1,9957	0,4082	1,4604	0,1677	1,3797	
1400	3,9609	7,8061	2,5347	6,0092	1,2551	3,5096	0,7844	2,7940	0,5715	2,0445	0,2348	1,9315	
1600	4,5268	8,9213	2,8968	6,8677	1,4344	4,0110	0,8964	3,1932	0,6531	2,3366	0,2683	2,2074	
1800	5,0926	10,0364	3,2589	7,7261	1,6137	4,5123	1,0085	3,5923	0,7348	2,6286	0,3018	2,4834	
$q_d(veic/h)$						$FFS_d =$	90 km/h						
200	0,5115	1,0299	0,3179	0,7584	0,1332	0,4134	0,0658	0,3254	0,0212	0,2047	0,0036	0,1970	
400	1,0229	2,0597	0,6358	1,5167	0,2664	0,8269	0,1315	0,6507	0,0425	0,4094	0,0072	0,3939	
600	1,5344	3,0896	0,9537	2,2751	0,3996	1,2403	0,1973	0,9761	0,0637	0,6141	0,0108	0,5909	
800	2,0458	4,1194	1,2716	3,0334	0,5328	1,6538	0,2630	1,3014	0,0849	0,8189	0,0143	0,7878	
1000	2,5573	5,1493	1,5895	3,7918	0,6661	2,0672	0,3288	1,6268	0,1061	1,0236	0,0179	0,9848	
1400	3,5802	7,2090	2,2253	5,3085	0,9325	2,8941	0,4603	2,2775	0,1486	1,4330	0,0251	1,3787	
1600	4,0917	8,2388	2,5432	6,0668	1,0657	3,3076	0,5261	2,6028	0,1698	1,6377	0,0287	1,5756	
1800	4,6031	9,2687	2,8611	6,8252	1,1989	3,7210	0,5918	2,9282	0,1910	1,8424	0,0323	1,7726	
q _d (veic/h)						$FFS_d = I$	100 km/h	!					
200	0,6698	0,9539	0,2666	0,6820	0,1222	0,4032	0,0624	0,3203	0,0043	0,1716	-0,0129	0,1398	
400	1,3397	1,9078	0,5332	1,3639	0,2444	0,8064	0,1249	0,6405	0,0087	0,3432	-0,0258	0,2795	
600	2,0095	2,8617	0,7998	2,0459	0,3666	1,2096	0,1873	0,9608	0,0130	0,5147	-0,0387	0,4193	
800	2,6794	3,8156	1,0664	2,7279	0,4887	1,6128	0,2497	1,2811	0,0174	0,6863	-0,0517	0,5591	
1000	3,3492	4,7696	1,3330	3,4099	0,6109	2,0160	0,3121	1,6014	0,0217	0,8579	-0,0646	0,6989	
1400	4,6889	6,6774	1,8663	4,7738	0,8553	2,8223	0,4370	2,2419	0,0304	1,2010	-0,0904	0,9784	
1600	5,3588	7,6313	2,1329	5,4558	0,9775	3,2255	0,4994	2,5622	0,0348	1,3726	-0,1033	1,1182	
1800	6,0286	8,5852	2,3995	6,1377	1,0997	3,6287	0,5618	2,8825	0,0391	1,5442	-0,1162	1,2580	
q _d (veic/h)						$FFS_d = I$	110 km/h	!					
200	0,4535	0,8948	0,1916	0,5884	0,1220	0,3906	0,0622	0,3038	0,0024	0,1752	0,0120	0,1620	
400	0,9070	1,7896	0,3831	1,1769	0,2440	0,7812		0,6075	0,0048	0,3504	0,0240	0,3240	
600	1,3605	2,6844	0,5747	1,7653	0,3660	1,1718	0,1866	0,9113	0,0073	0,5257	0,0360	0,4860	
800	1,8140	3,5791	0,7663	2,3538	0,4880	1,5624	0,2488	1,2150	0,0097	0,7009	0,0480	0,6480	
1000	2,2676	4,4739	0,9578	2,9422	0,6100	1,9530	0,3110	1,5188	0,0121	0,8761	0,0600	0,8100	
1400	3,1746	6,2635	1,3410	4,1191	0,8539	2,7342	0,4353	2,1263	0,0169	1,2265	0,0840	1,1339	

1600 3,6281 7,1583 1,5325 4,7076 0,9759 3,1248 0,4975 2,4300 0,0193 1,4018 0,0959 1,2959 1800 4,0816 8,0531 1,7241 5,2960 1,0979 3,5153 0,5597 2,7338 0,0218 1,5770 0,1079 1,4579

Assim, com o novo modelo de FD_{npz} , foi possível calcular a densidade de veículos em pelotões para os segmentos com 50% e 100% de NPZ. Então, foi aplicada a Equação 5.7 para determinar o fator de ajuste para as zonas de ultrapassagens proibidas (f_{npz}) para NPZ de 50% e de 100%, para diferentes valores de COG, P_{hv} e FFS_d :

$$f_{nnz} = FD_{nnz} - FD_d, (5.7)$$

em que f_{npz} é o fator de ajuste para as faixas adicionais de subida; FD_d é o Modelo Base para a densidade de veículos em pelotão e FD_{npz} é a densidade de veículos em pelotões em segmentos com zonas de ultrapassagens proibidas.


Os valores intermediários de f_{npz} para valores de P_{hv} e FFS_d diferentes dos apresentados na Tabela 5.8 devem ser obtidos por meio de interpolação linear. A Tabela 5.8 apresenta o f_{npz} para o COG 4 do modelo linear. Para outros valores de COG do modelo linear e para os resultados do modelo quadrático, os f_{npz} são apresentados no Apêndice D.

Com os resultados dos modelos, foi possível verificar o efeito das zonas de ultrapassagens proibidas na densidade de veículos em pelotão unidirecional. Com a NPZ de 100%, a FD_d apresentou um impacto significativo para diferentes combinações de COG, FFS e Phv. Entretanto, os resultados com NPZ = 50% variaram, tendo apresentando pouco impacto para algumas combinações de COG, FFS e P_{hv} .

O COG = 1 apresentou resultados semelhantes para a FD_d para o Modelo Base, para NPZ = 50 % e para NPZ = 100%, considerando todas as FFS e P_{hv} 's simulados. Esse fato pode estar diretamente relacionado as características geométricas desse segmento, que não impactam tão significativamente o desempenho dos veículos pesados e reduzem a demanda por ultrapassagens. As Figuras 5.2 e 5.3 demonstram os resultados para FFS de 70 km/h para os modelos linear e quadrático, respectivamente, e é perceptível que os modelos não são significativamente influenciados pela NPZ.

Figura 5.2: Resultados para COG = 1, FFS = 70 km/h, P_{hv} = 0% (a), P_{hv} = 10% (b), P_{hv} = 20% (c), P_{hv} = 30% (d), P_{hv} = 40% (e) e P_{hv} = 50% (f) - Modelo Linear

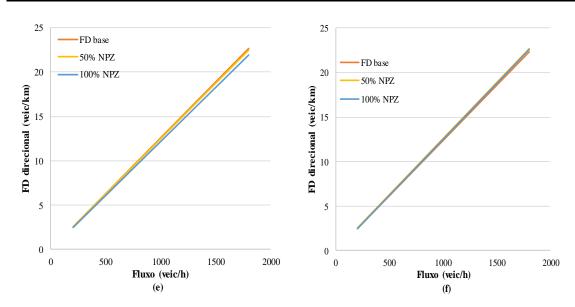
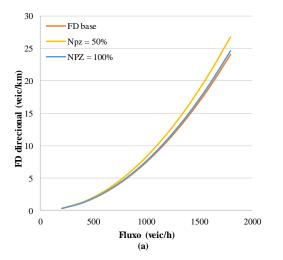
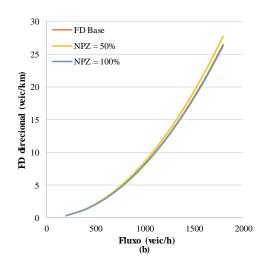
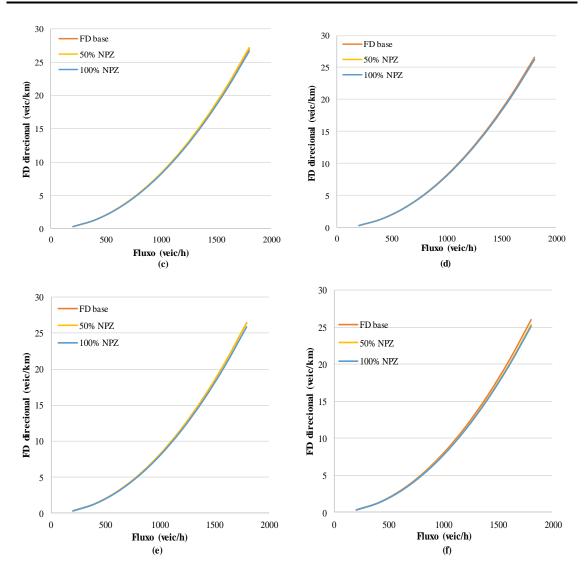
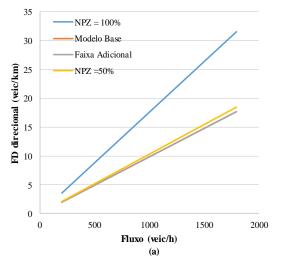
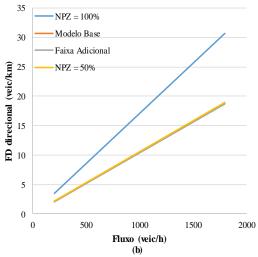





Figura 5.3: Resultados para COG = 1, FFS = 70 km/h, P_{hv} = 0% (a), P_{hv} = 10% (b), P_{hv} = 20% (c), P_{hv} = 30% (d), P_{hv} = 40% (e) e P_{hv} = 50% (f) – Modelo Quadrático

Para o COG = 2 e o COG = 3 e P_{hv} 's de 0% e de 10 %, os segmentos com 100% de NPZ resultaram em uma FD_d maior que a FD_d de 50% de NPZ, que por sua vez apresentaram FD_d mais elevada que o Modelo Base. Entretanto, para os demais P_{hv} 's, o resultado obtido para a NPZ de 50% foi bastante semelhante ao do Modelo Base, demonstrando pouco efeito das zonas de ultrapassagens proibidas para os segmentos com essas características. Já a FD_d com a NPZ = 100% foi maior que no Modelo Base e NPZ=50% as ambas. AS Figuras 5.4 a 5.7 ilustram os resultados para os COG's 2 e 3, para velocidade de FFS de 80km/h, sendo possível observar a proximidade dos resultados para 50% de NPZ e o Modelo Base.

Com os segmentos do COG = 4, os resultados obtidos demonstraram uma FD_d maior para os segmentos com 100% de NPZ que a FD_d de 50% de NPZ, que por sua vez apresentaram FD_d mais elevada que o Modelo Base. Somente com $P_{hv} = 50\%$ e FFS = 90 km/h e de 100 km/h que a FD_d do Modelo Base foi semelhante aos resultados dos segmentos com 50% de NPZ. Mesmo nessas condições, o FD_d com 100% de NPZ foi maior. As Figuras 5.12 e 5.13 demonstram a diferença entre os modelos analisados para a FFS de 110km/h, sendo perceptível a influência das zonas de ultrapassagens proibidas na densidade de veículos em pelotão.


Por fim, os resultados de FD_d do COG = 5 e com NPZ = 100% foram maiores do que a FD_d do Modelo Base e com NPZ = 50%. Entretanto, a comparação entre a FD_d do Modelo Base com a NPZ = 50% oscilou dependendo da FFS e do P_{hv} , sendo que a FD_d do Modelo Base foi menor que a FD_d de 50% NPZ nas seguintes condições: 0% de P_{hv} (todas FFS); 10% de P_{hv} , exceto para FFS de 90 km/h; 20% de P_{hv} e FFS de 110 km/h; 30% de P_{hv} e FFS de 90 km/h; 40% de P_{hv} e FFS de 90 km/h; e para 50% de P_{hv} e FFS de 70 km/h e 80 km/h. As Figuras 5.14 e 5.15 demonstram a diferença entre os modelos analisados para a FFS de 110 km/h.


Esse fato pode ser em função da grande participação de veículos pesados no fluxo de análise que, por serem bastante impactados pelo alinhamento vertical e comprimento desse tipo de COG e por possuírem desempenhos semelhantes, podem ter reduzidas as demandas de ultrapassagens se comparados aos fluxos de tráfego com menor participação de veículos pesados. Ainda assim, quando não existem oportunidades de ultrapassagens,

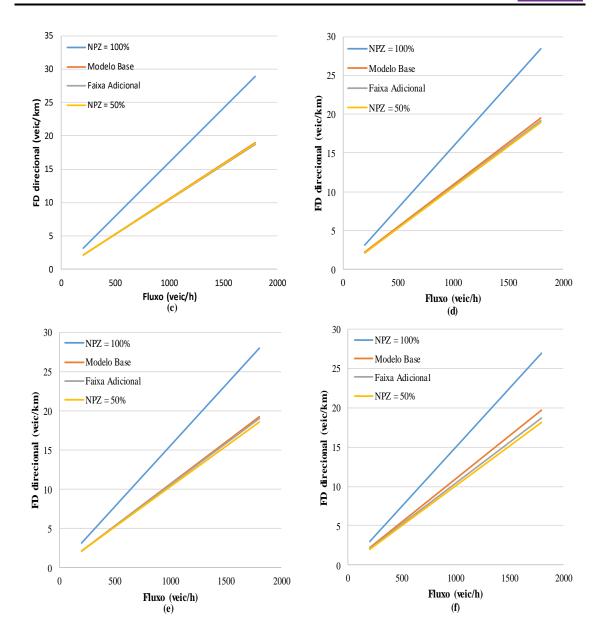

o impacto na FD_d pode chegar a 5 veic/km, como no caso do COG = 5, P_{hv} de 0% e FFS de 70 km/h.

Figura 5.4: Resultados para COG = 2, FFS = 80 km/h, P_{hv} = 0% (a), P_{hv} = 10% (b), P_{hv} = 20% (c), P_{hv} = 30% (d), P_{hv} = 40% (e) e P_{hv} = 50% (f) - Modelo Linear

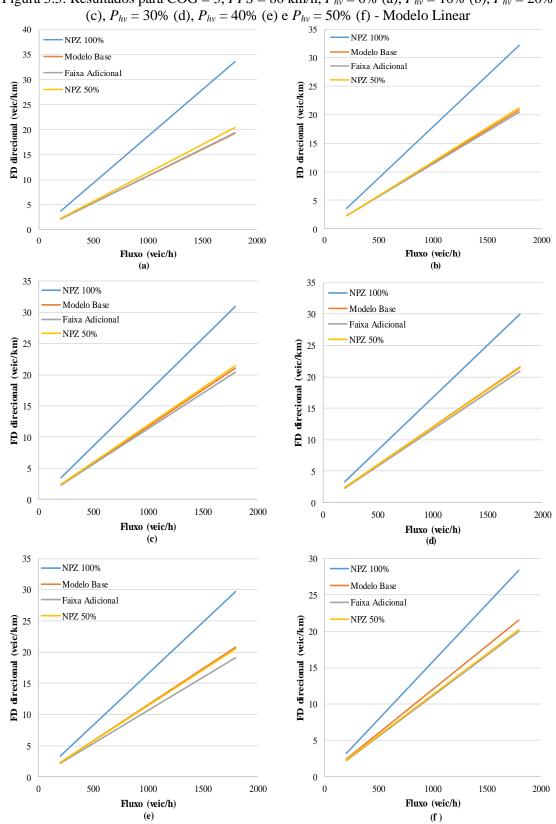


Figura 5.5: Resultados para COG = 3, FFS = 80 km/h, P_{hv} = 0% (a), P_{hv} = 10% (b), P_{hv} = 20% (c), P_{hv} = 30% (d), P_{hv} = 40% (e) e P_{hv} = 50% (f) - Modelo Linear

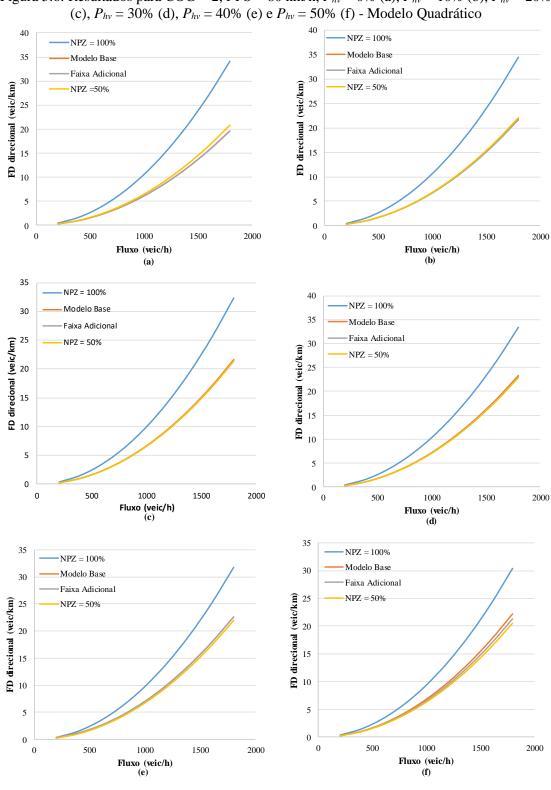
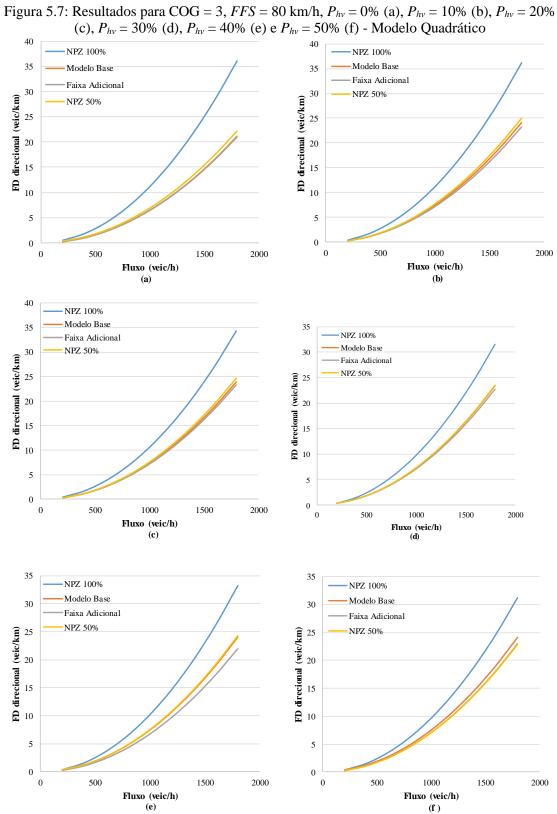
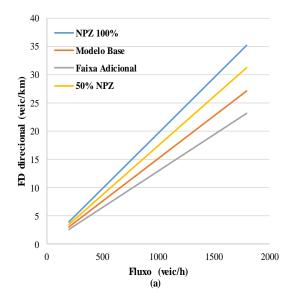
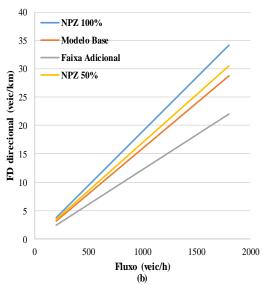


Figura 5.6: Resultados para COG = 2, FFS = 80 km/h, P_{hv} = 0% (a), P_{hv} = 10% (b), P_{hv} = 20% (c), P_{hv} = 30% (d), P_{hv} = 40% (e) e P_{hv} = 50% (f) - Modelo Quadrático

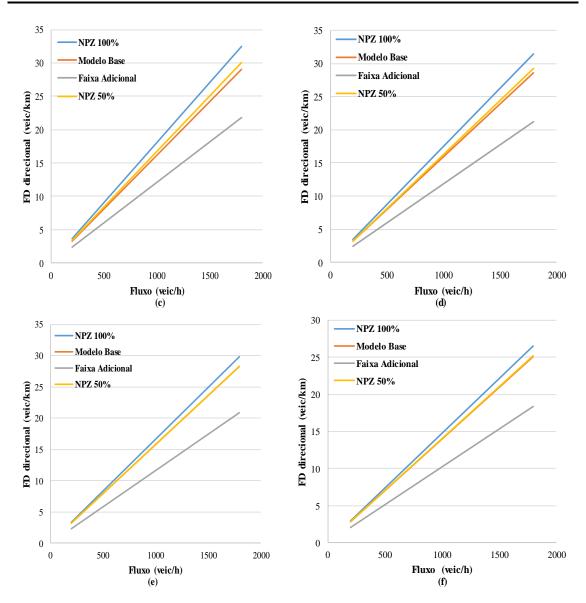
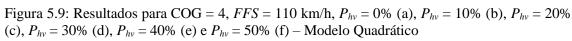


Figura 5.8: Resultados para COG = 4, FFS = 110 km/h, P_{hv} = 0% (a), P_{hv} = 10% (b), P_{hv} = 20% (c), P_{hv} = 30% (d), P_{hv} = 40% (e) e P_{hv} = 50% (f) – Modelo Linear



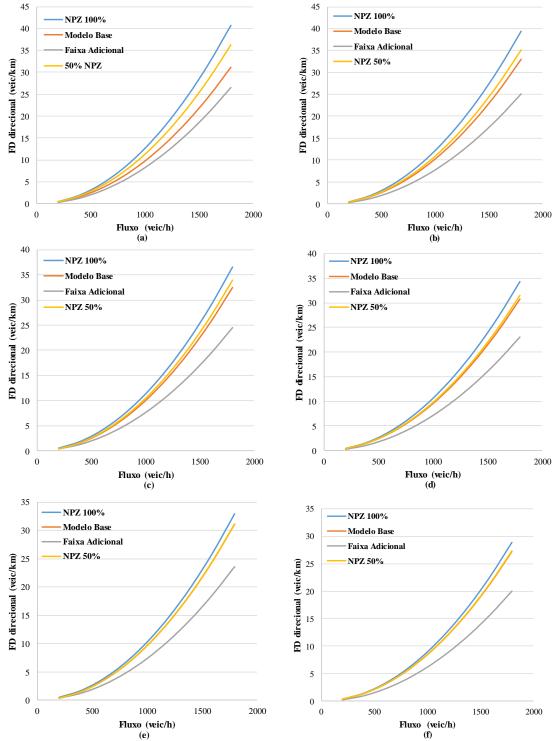
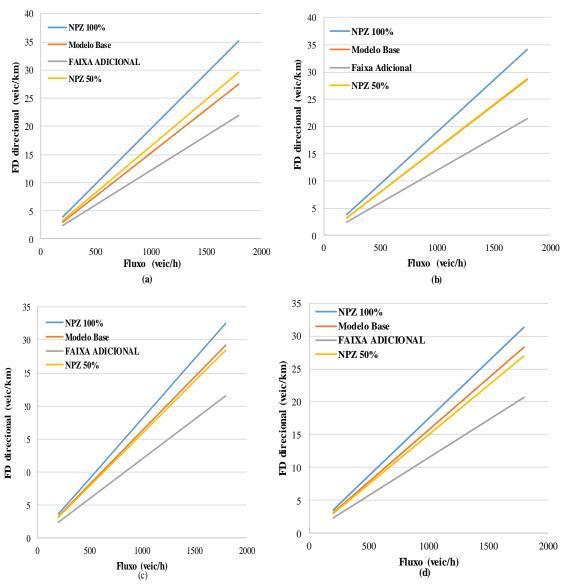



Figura 5.10: Resultados para COG = 5, FFS = 110 km/h, P_{hv} = 0% (a), P_{hv} = 10% (b), P_{hv} = 20% (c), P_{hv} = 30% (d), P_{hv} = 40% (e) e P_{hv} = 50% (f) – Modelo Linear

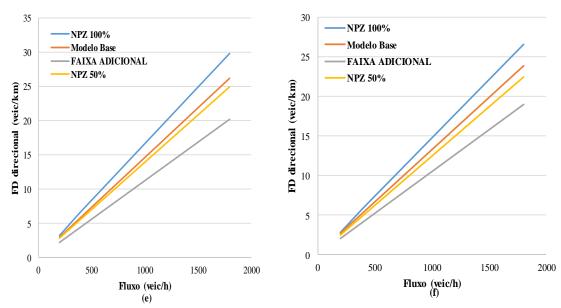
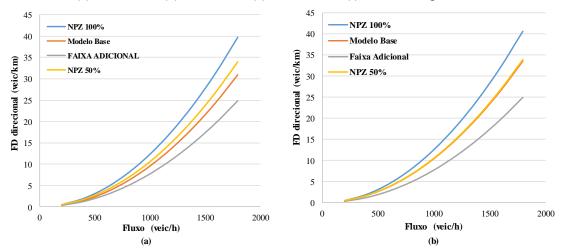
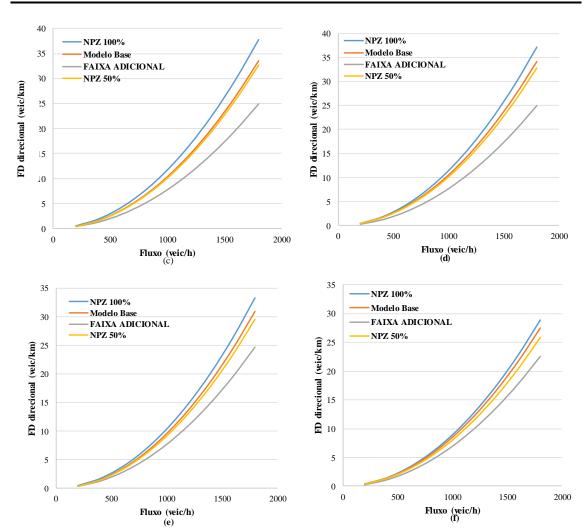




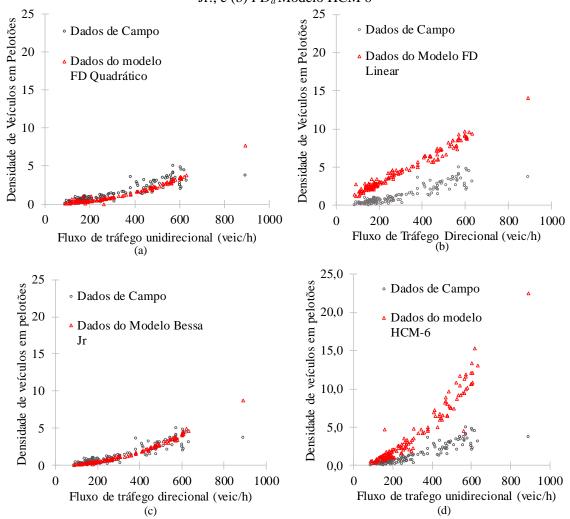
Figura 5.11: Resultados para COG = 5, FFS = 110km/h, P_{hv} = 0% (a), P_{hv} = 10% (b), P_{hv} = 20% (c), P_{hv} = 30% (d), P_{hv} = 40% (e) e P_{hv} = 50% (f) – Modelo Quadrático

5.5 Obtenção do Nível de Serviço a partir dos modelos propostos

Foi estabelecido um critério de determinação do Nível de Serviço de rodovias de pistas simples a partir de FD_d , da forma como proposto por Washburn $et\ al$. (2018) para o HCM 6. O método consiste em determinar os volumes de serviço – ou seja, aqueles volumes que determinam a mudança do nível de serviço – partindo-se do Modelo Base e em condições bem favoráveis (COG = 1 e P_{hv} = 0%) para o método do HCM 6. Com esses volumes de serviço, determina-se os valores de FD_d correspondentes ao Modelo Base, com COG = 1 e P_{hv} = 0%, para a proposta deste trabalho. Os valores de FD_d encontrados determinam os intervalos dos diferentes níveis de serviço. Na Tabela 5.9, é possível encontrar os critérios obtidos para os modelos propostos nesta pesquisa (linear e quadrático), além dos critérios de Bessa Jr. (2015) e do HCM 6.

Tabela 5.9: Comparativo dos critérios de obtenção de nível de serviço em função de FD

Nível de	$FD_{d\ Linear}$	$FD_{d\ Quadrático}$	FD Bessa Jr	HCM 6		
Serviço				Rodovias $v \ge 80 \text{ km/h}$	$ Rodovias \ v \le 80 \\ km/h $	
A	≤ 2,9	≤ 1,2	≤ 2	≤ 3,2	<u>≤</u> 4	
В	>2,9 -4,7	>1,2-2,7	> 2 - 4	> 3,2 - 6,4	> 4 - 8	
C	>4,7 - 9,4	>2,7-4,7	> 4 - 6	>6,4 - 12,8	> 8 - 16	
D	9,4 - 11,8	>4,7-7,4	> 6 -14	> 12,8 - 19,2	> 16 - 24	
E	> 11,8	>7,4	> 14	>19,2	> 24	


O HCM 6 (Washburn *et al.*, 2018) classifica, como demonstrado, as rodovias em duas categorias em função da velocidade, pois foi identificado que em rodovias com velocidades menores o percentual de veículos em pelotão não é reduzido de forma proporcional à redução da velocidade, necessitando de um critério de classes mais abrangente para equacionar essa diferença. Como nesta pesquisa os dados foram obtidos em uma rodovia de velocidade considerada alta, a avaliação considera apenas a classificação do HCM 6 para rodovias com velocidade maior que 80 km/h.

Para comparar cada um dos critérios, foram calculadas FD_d e os níveis de serviços de metade das correntes de tráfego obtidas em campo, com as correntes de tráfego destacadas para validação dos modelos. Além dos modelos do HCM-6 e de Bessa Jr. (2015), os resultados de nível de serviço do HCM 2010 também foram calculados. Os resultados da FD_d dos modelos foram comparados com a FD_d obtida diretamente do campo (para obter a PTSF do campo, foi usada a PF como proxy). Conforme demonstrado na Figura 5.6, os

modelos de FD_d quadrático e de Bessa Jr. (2015) apresentaram maior proximidade com os resultados de campo do que os modelos linear e do HCM 6.

Figura 5.12: Medidas de desempenho obtidas em campo e obtidas dos modelos para parte dos dados de validação: (a) FD_d Modelo Quadrático; (b) FD_d Modelo Linear; (b) FD_d Modelo Bessa Jr.; e (b) FD_d Modelo HCM 6

Para verificar a qualidade da estimativa dos modelos, foram calculadas quatro funções de ajustamento (goodness-of-fit functions) entre os resultados de FD_d obtidos de cada modelo e obtidos em campo: i) Erro normalizado médio (MNE) (Equação 5.8); (ii) Erro normalizado absoluto médio (MANE) (Equação 5.9); (iii) Raiz quadrada do erro normalizado quadrático médio (RMSNE) (Equação 5.10); e (iv) Coeficiente de correlação (r) (Equação 5.11). A Tabela 5.10 apresenta os resultados.

$$MNE = \frac{1}{N} \sum_{i=1}^{N} \frac{x_i - y_i}{y_i},$$
 (5.8)

$$MANE = \frac{1}{N} \sum_{i=1}^{N} \frac{|x_i - y_i|}{y_i},$$
 (5.9)

RMSNE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - y_i}{y_i} \right)^2}$$
, (5.10)

$$r = \frac{1}{N-1} \sum_{i=1}^{N} \frac{\left(x_i - \bar{x}\right) \left(y_i - \bar{y}\right)}{\sigma_x \sigma_y},$$
 (5.11)

Em que, N é o número de correntes de tráfego observada, x é a medida de desempenho obtida pela simulação e y é a medida de desempenho obtida diretamente do campo.

Tabela 5.10: Funções Fitness para cada modelo de FD_d

rusela 2.10.1 uniques Filiness para eada modelo de 124								
$Modelo\ da\ FD_d$	Função Fitness							
	MNE	MANE	<i>RMSNE</i>	r				
Modelo Quadrático	-5,6%	50,28%	0,77	0,87				
Modelo Linear	426,57%	426,57%	6,30	0,78				
Bessa Jr. (2015)	0,9%	40,79%	0,56	0,87				
HCM-6	239,4%	239,5%	3,20	0,78				

Os modelos Quadrático e de Bessa Jr. (2015) apresentaram bons resultados para o coeficiente de correlação r e para as funções MANE e RMSNE. Os outros dois modelos apresentaram resultados ruins para o MNE, MANE e RMSNE, reforçando a ideia de que os modelos não se mostraram adequados nesta pesquisa.

Após o cálculo da FD_d , foram obtidos os níveis de serviços dos fluxos de validação e dos resultados de campo considerando cada uma das classificações propostas. A Tabela 5.11 demonstra o resultado da FD_d dos modelos, enquanto a Tabela 5.12 apresenta o nível de serviços da FD_d do campo, de acordo com o critério de cada um dos modelos.

Tabela 5.11: Porcentagem de cada nível de serviço de acordo com o método

Nível de	$FD_{d\ Linear}$	FD_d	FD	НСМ 6	HCM 2010
Serviço		Quadrático	Bessa Jr		
A	39,6%	66,7%	71,5%	61,8%	50,7%
В	24,3%	18,8%	21,5%	13,2%	37,7%
C	33,3%	13,9%	6,3%	22,9%	9,6%
D	2,1%	0,0%	0,7%	2,1%	2,1%
E	0,7	0,7%	0,0%	0,0%	0,0%

Tabela 5.12: Porcentagem de cada nível de serviço de acordo com o critério de cada modelo - FD_d do campo

Nível de Serviço	$FD_{d\ Linear}$	FD _{d Quadrático}	FD Bessa Jr	НСМ 6
A	84,0%	60,4%	70,1%	87,5%
В	14,6%	20,8%	25,7%	12,5%
C	1,4%	17,4%	4,2%	0,0%
D	0,0%	1,4%	0,0%	0,0%
E	0,0%	0,0%	0,0%	0,0%

Esses resultados demonstram que os modelos quadrático e de Bessa Jr. (2015) se mostraram mais aderentes aos resultados de campo obtidos das correntes de tráfego de validação. Além disso, os modelos apresentaram critérios de nível de serviço bastante próximos para a FD_d calculada pelos modelos com a FD_d de campo, especialmente o modelo de Bessa Jr. (2015) para o nível A e os critérios propostos por esta pesquisa (modelo quadrático) foram mais próximos no nível de serviço B. Por outro lado, tanto os critérios do modelo linear como do HCM 6 e do HCM 2010 parecem subestimar o nível de serviço de campo. Esse resultado demostra que, se utilizar o HCM (2010 ou a nova proposta do manual) sem nenhum tipo de adaptação, o que é comum, os níveis de serviço obtidos tendem a ser piores do que, de fato, são, pelo menos para os casos estudados neste trabalho.

6 CONSIDERAÇÕES FINAIS

Esta pesquisa teve, como objetivo principal, obter um método adequado para calcular o nível de serviço em rodovias de pista simples, tendo, como base, os dados de trechos de rodovias de pista simples sob concessão da Via040. Para atingir a meta da pesquisa, foi obtido um conjunto de dados em segmentos de rodovias de pista simples na BR-040 com diferentes condições geométricas e de tráfego. O intuito foi usar essas informações para calibrar e validar o simulador de tráfego escolhido, o VISSIM, que, por sua vez, foi utilizado para produzir modelos de tráfego, com e sem zonas de ultrapassagens proibidas e faixas adicionais.

A geometria viária foi tratada por meio de cinco classes do alinhamento vertical, denominados de COG's. Então, foram gerados segmentos viários hipotéticos e gerados dados de tráfego sintéticos, utilizados para ajustar modelos de tráfego. Os resultados dessa análise indicaram que dois modelos quadráticos entre fluxo unidirecional e FD – propostos neste trabalho e de Bessa Jr. (2015) – produziram valores de nível de serviço e de FD mais aderentes ao que foram observados em campo. A utilização do HCM, tanto para a versão de 2010 quanto para a provável nova proposta que será publicada em 2019 – sem nenhuma adaptação – tende a subestimar o nível de serviço em rodovias brasileiras, o que provocaria investimentos antes do momento adequado.

6.1 Coleta de dados

Os dados utilizados neste trabalho foram obtidos com o uso de drone e pelo método das placas. O conjunto de dados obtido possui correntes de tráfego com volumes de tráfego considerados baixos, sendo recomendável coletar, futuramente, correntes de tráfego com fluxos mais elevados, para aumentar a confiabilidade das análises. Cabe, também, obter dados em condições geométricas distintas das utilizadas nesta pesquisa, para comparar novamente os modelos de tráfego analisados. Também seria interessante obter mais informações em rodovias diferentes, que não sejam especificamente a BR-040.

Além disso, é recomendável que sejam obtidos um conjunto de dados específicos para o comportamento dos condutores em curvas horizontais e, então, verificar o impacto na densidade de veículos em pelotões, haja vista que, neste trabalho, foi obtido um conjunto pequeno de informações nessas condições.

6.2 Calibração e validação do VISSIM

A calibração foi realizada com base em um Algoritmo Genético (AG), mas somente após estimar outros parâmetros fundamentais do simulador, como aqueles ligados à distribuição de velocidades desejadas e ao desempenho de veículos pesados. Com o simulador calibrado, foram gerados dados de tráfego em segmentos viários hipotéticos, com uma ampla gama de características geométricas e de tráfego.

As distribuições de velocidades desejadas dos veículos são de fundamental importância para simulação no VISSIM. Os dados de velocidades obtidos nesta pesquisa foram pontuais, sem que os veículos fossem acompanhados durante todo o percurso, não sendo, portanto, capaz de representar bem a velocidade desejada dos motoristas ao longo da viagem. Assim, é recomendável obter dados de velocidade de veículos que estejam livres ao longo de um percurso, proporcionando melhores estimativas das distribuições de velocidades desejadas.

É recomendável, ainda, ampliar as informações sobre os veículos pesados, em especial o comportamento desses veículos em curvas horizontais e, também, a respeito da velocidade desejada por categoria de veículo pesado, pois o VISSIM permite que sejam atribuídas velocidades desejadas específicas para cada tipo de veículo. Sugere-se, também, que, nas próximas pesquisas, seja obtida uma gama maior de dados diretamente do campo com o intuito de estimar mais parâmetros comportamentais do simulador, buscando não haver necessidade de usar uma heurística de busca e otimização, como um AG.

6.3 Modelos de Tráfego

Foram gerados dois modelos de tráfego unidirecionais entre o fluxo de tráfego e a densidade de veículos em pelotões, sendo um linear e outro quadrático. O modelo base, em que não há zonas de ultrapassagens proibidas e faixas adicionais, foi utilizado para verificar a influência das faixas adicionais e das zonas de ultrapassagens proibidas na *FD*.

As faixas adicionais de subida foram implantadas nos modelos hipotéticos em segmentos com rampa ascendente maior ou igual a 2% de inclinação e comprimento igual ou maior a 500 m. Para trechos com COG = 1, nenhum segmento hipotético apresentou essas características. As faixas adicionais de subida demonstraram pouco impacto em condições de COG = 2 e de COG = 3, ainda que o percentual de veículos pesados no segmento seja elevado. Os fluxos foram

baixos e é desejável testar os modelos de faixa adicional para os COG = 2 e COG = 3 em condições de tráfego mais elevados, pois, com fluxos baixos, são maiores as oportunidades de ultrapassagem durante todo o segmento, o que pode mascarar o benefício da faixa adicional para essas categorias de alinhamento vertical.

A partir do COG = 4, fica evidente o benefício das faixas adicionais na redução da densidade de veículos em pelotões. Dessa forma, sugere-se que análises de custo-benefício da implantação de faixas adicionais sejam conduzidas nesses tipos de segmentos, determinando também o comprimento ótimo das faixas adicionais por COG.

Com relação ao impacto das zonas de ultrapassagens proibidas, foi mais evidente para condições de geometria viária mais desfavorável (COG > 3 e NPZ > 50%). Por outro lado, em casos em que as condições geométricas são boas (COG = 1, P_{hv} = 0% e FFS =110 km/h), o impacto na qualidade de circulação da rodovia devido à proibição de ultrapassagens é pequeno. Os resultados de NPZ = 0%, NPZ = 50% e NPZ = 100% foram semelhantes.

Para COG = 2 e COG = 3, quando NPZ = 100%, a FD é muito maior que no modelo base, que, por sua vez, é semelhante para a condição de 50% de NPZ. Para COG = 4 e COG = 5, a FD com NPZ = 50% foi maior que a do modelo base e menor que do cenário com 100% de NPZ. É desejável que esse modelo seja testado com uma gama maior de dados de tráfego e de características geométricas.

Considerando-se a quantidade de fatores de ajustes e a complexidade para obtenção da densidade de veículos em pelotões propostos pelo HCM 6, uma alternativa, também, seria adaptar o novo método para condições de rodovias brasileiras, mantendo-se a estrutura do manual.

6.4 Nível de Serviço e comparação com outros modelos de tráfego

Dentre os modelos de densidade de veículos em pelotões desenvolvidos e avaliados nesta pesquisa, destaca-se o modelo quadrático e o de Bessa Jr. (2015) como mais aderentes aos resultados obtidos em campo. Entretanto, é importante que o modelo quadrático seja avaliado com volumes de tráfegos maiores, pois não foram coletadas correntes de tráfego unidirecionais acima de 1000 veic/h, sendo que quase a totalidade dos dados foi inferior a 600 veic/h.

Principalmente para que se possa estabelecer critérios de definição de níveis de serviço com base em FD_d , não foi considerada a percepção dos usuários. O motivo é a complexidade e os custos elevados para se conduzir uma pesquisa abrangente o suficiente para capturar e modelar as impressões dos usuários. Assim, recomenda-se que esse tipo de pesquisa possa ser conduzido futuramente.

REFERÊNCIAS

AASHTO (2001) A Policy on Geometric Design of Highways and Streets. American Association of State Highway and Transportation Officials, Washington, 2001.

ABCR. Relatório Anual. Associação brasileira de concessionárias de rodovias, São Paulo, 2016

ALAIX, V. G.V.; e GARCÍA, A. – *Climbing Lane Level of Service Estimation in Spain*, XII Conference on Transportation Engeneering, CIT 2016, 7-9 Junho, Valência, Espanha, 2016.

AL-KAISY, A.; JAFARI, A.; WASHBURN, S.. *Measuring Performance on Two-Lane Highways – Empirical Investigation*. Transportation Researcu Record: Journal of the Transportation Research Board. 2017

AGÊNCIA NACIONAL DE AVIAÇÃO CIVIL, Regulamento Brasileiro de Aviação Civil Especial – RBAC –E nº 94, 2017.

BALUJA, S; *Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning*. Techinal Report n° CMU-CS-94-163. Carnegie Mellon University. 1994.

BARMPOUNAKIS, E, N.; VLAHOGIANNI, E. I.; GOLIAS, J. C.; BABINEC, A.. How accurate are small drones for measuring microscopic traffic parameters?. Transportation Letters, v., n. pp., 2017

BEAN, J; Genetic algorithms and random keys for sequencing and optimization. ORSA Journal of Computing 6(2), 154-160. 1994.

BESSA JR., J. E. *Caracterização do fluxo de tráfego em rodovias de pista simples do Estado de São Paulo*. Dissertação de Mestrado, Universidade de São Paulo, 2009. Disponível em < http://www.teses.usp.br/teses/disponiveis/18/18144/tde-04122009-150455/pt-br.php>. Consulta em 01/08/2017.

BESSA JR., J. E.; *Medidas de desempenho para avaliação da qualidade de serviço em rodovias de pista simples no Brasil*. Tese de Doutorado, Universidade de São Paulo, 2015.

BESSA JR, J. E.; SETTI, J. R.; Evaluating Measures of Effectiveness for Quality of Service Estimation on Two-Lane Rural Highways. Journal of Transportation Engineering, Part A: Systems, v. 144, p. 04018056, 2018.

BESSA JR, J. E.; SETTI, J. R; WASHBURN, S. S.; *Evaluation of Models to Estimate Percent Time Spent Following on Two-Lane Highways*. Journal of Transportation Engineering, Part A: Systems, v. 143, p. 04017010, 2017.

BESSA JR., J. E.; Setti, J. R. Derivation of ATS and PTSF Functions for two-lane, rural highways in Brazil. Procedia Social and Behavioral Sciences, v. 16, p. 282–292, 2011.

BESSA JÚNIOR, J. E.; SETTI, J. R. Avaliação de medidas de desempenho para rodovias de pista simples obtidas a partir de relações fluxo-velocidade. Transportes, v. 24, p. 72-80, 2016.

BOORA, A.; GHOSH, I. Performance Indicator for Two-Lane Intercity Highways under Heterogeneous Traffic Condition. Available. IN 19th EURO Working Group on Transportation Meeting, 5-7 September 2016, Istanbul, Turkey.

BRILON, W.; E WEISER, F. Two-lane rural highways: the German experience. Transportation Research Record 1988, TRB, National Research Council, Washington, D.C., p. 38-47. 2006.

CALIPER; Transmodeler Traffic Simulation Softaware Brochure. Massachussets, EUA, 2018.

CONFEDERAÇÃO NACIONAL DOS TRANSPORTES, Anuário CNT do Transporte, 2017.

COWAN, R.J.; A road with no overtaking. Australian Journal of Statistics. 1971.

CHIAPPONE, S.; GIUFFRÈ, O.; A. GRANNÀ; MAURO, R.;SFERLAZZA, A. R.; *Traffic simulation models calibration using speed–density relationship: An automated procedure based on genetic algorithm.* Expert Systems with Applications, v. 44, p. 147-155. 2016

CUNHA, A. L. B. N; Sistema automático para obtenção de parâmetros do tráfego veicular a partir de imagens de vídeo usando OpenCV. Tese de Doutorado, Escola de Engenharia de São Carlos, Universidade de São Paulo, 2013.

CUNHA, A. L. B. N.; BESSA JR, J. E. e SETT, J. R.. *Genetic Algorithm for the Calibration of Vehicle Performance Models of Microscopic Traffic Simulators*. Fourteenth Portuguese Conference on Artificial Intelligence. LNAI Proceedings., v. 5816. p. 3-14, Springer, 2009.

CUNHA, A. L. B. N.; MON-MA, M. L.; ARAÚJO, J. J.; EGAMI, C. Y. e SETTI, J. R.; *Caracterização da frota de caminhões no sistema Anhanguera - Bandeirantes*. XIX ANPET Congresso de Pesquisa e Ensino em Transportes, Recife-PE, 2005.

CUNHA, A. L. B. N.; SETTI, J. R.; *Truck Equivalence Factors for Divided, Multilane Highways in Brazil.* Procedia: Social and Behavioral Sciences, v. 16, p. 248-258, 2011.

DEMARCHI, S. H. *TruPer Simulador de Desempenho de Veículos Rodoviários e Ferroviários*. 30 f. Arquivo de Help. Departamento de Engenharia Civil, Universidade Estadual de Maringá, 2000.

DEMARCHI, S. H. e SETTI, J. R. (2003) Limitations of passenger-car equivalent derivation for traffic streams with more than one truck type. Transportation Research Record 1852, Washington, DC, EUA, p. 96-104, 2003.

DEPARTAMENTO DE EDIFICAÇÕES E ESTRADAS DE RODAGEM DE MINAS GERAIS (DEER-MG). Informativo sobre as condições da malha rodoviária de Minas Gerais. Disponível em: < http://www.deer.mg.gov.br/transportes/rodovias#malha-do-estado> Consulta em: 14/06/2019.

DEPARTAMENTO NACIONAL DE INFRAESTRURA DE TRANSPORTES. Terminologias Rodoviárias Usualmente Utilizadas. Versão 1.1. Agosto 2017.

DNIT Manual de Estudos de Tráfego. Ministério dos Transportes, Departamento Nacional de InfraEstrutura de Transportes, Rio de Janeiro, RJ, 2006.

DONG, J., HOUCHIN A.; SHAFIEIRAD, N.; LU, C.; HAWKINS, N.; KNICKERBOCKER, S.; VISSIM Calibration for Urban Freeways. Centerfor Transportation Research and Education, Institute for Transportation, Iowa State University, Ames, IA, 2015

EGAMI, C. Y.. Adaptação do HCM2000 para determinação do nível de serviço em rodovias de pista simples no Brasil. Tese de Doutorado, Escola de Engenharia de São Carlos, Universidade de São Paulo, 2006.

EGAMI, C. Y.; SETTI, J. R. A.; Rilett, L. R.. *Algoritmo genético para calibração automática de um simulador de tráfego em rodovias de pista simples*. Transportes (Rio de Janeiro), v. XII, p. 23-35, 2004.

GOLDBERG, D. E.; *The design of innovation: Lessons from and for Competent Genetic Algorithms*. Kluwer Academic Publishers. 1989.

GOLDBERG, D. E.; Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, Massachussets. 1989

HARWOOD, D. W.; MAY, A. D.; ANDERSON, I. B.; LEIMAN, L.; e ARCHILLA, A. R.; *Capacity and quality of service of two-lane highways*. Final Report, NCHRP Project 3-55 (3). Midwest Research Institute, Kansas City, Mo, 1999.

HOEL, A. L. et al. *Engenharia de Infraestrutura de Transportes: uma integração multimodal*. Editora Cengage Learning. 2011

HOBAN, C. J.; SHEPHERD, R. J.; FAWCETT, G, J.; E ROBINSON, G. K.; *A model for simulating traffic on two-lane rural roads* – User guide and manual for TRARR Version 3.2, Victoria, Australia, 1991.

HOLLANDER, Y.; LIU, R. *The Principles of Calibrating Traffic Microsimulation Models*. Transportation, v. 35, p. 347–362, 2008.

JACOBSEN, A.C.; CYBUS, H.B. B.. *Microssimulação da travessia de pedestres: coleta de dados para calibração de modelos*. Transportes, v.19, p.79-86, 2011.

LACERDA, V. M.; Estimação da velocidade média em vias urbanas com o uso do microssimulador VISSIM. Dissertação de mestrado. Universidade Federal do Ceará. 2016

LACERDA, V. M.; CASTRO-NETO, M. M.; Considerações sobre a calibração do modelo de car-following do vissim para vias arteriais urbanas. Anais do XXVIII Congresso da Associação Nacional de Pesquisa e Ensino em Transportes. Curitiba, PR, 2014

LEIMAN, L.; MAY, A. D. *User-Friendly interface for rural highway computer simulation models with emphasis on the incorporation of the TWOPAS model.* Report N° FHWA/CA/TO-96/25. NTIS-National Technical Information Service, U. S. Department of Commerce. University of California, Berkeley CA, 1996.

LLORCA, C., FARAH, H. *Passing Behavior on Two-Lane Roads in Real and Simulated Environments*. Journal of the Transportation Research Board, pp. 29-38. DOI: 10.3141/2556-04. 2016

LOWNES, N.E. MACHEMEHL, R.B. Sensitivity of Simulated Capacityto Modification of VISSIMDriver Behavior Parameters. Transportation Research Record: Journal of the Transportation Research Board, No. 1988, Transportation Research Board of the National Academies, Washington, D.C., pp. 102–110. 2006

LUTTINEN, R., (2001). *Percent Time-Spent-Following as a performance measure for two-lane highways*. Transportation Research Record, 1776(1), 52–59.

LIU, C.; WANG, Z.. *Passing Segment Length Determination on Two-Lane Highways*. World Conference on Transport Research – WCTR, 2016, Shanghai. Transportation Research Procedia 25, 491–496, 2017.

KHAN, M. A.; ECTORS, W.; BELLEMANS, T; JANSSENS, D.; WETS, L. *UAV-Based Traffic Analysis: A Universal Guiding Framework Based on Literature Survey*. 19th EURO Working Group on Transportation Meeting, EWGT2016, 5-7 September 2016, Istanbul, Turkey. Transportation Research Procedia 22, 541–550,2017;

KIM, K. O.; e RILETT, L. R.; Simplex-Based Calibration of Traffic Microsimulation Models with Intelligent Transportation Systems Data. Transportation Research Record, (1855), 80-89, 2003.

MA, T.; ABDULHAI, B.; Genetic Algorithm-based Optimization Approach and generic tool for calibration traffic microscopic simulation parameters. Transportation Research Record 1800, TRB, National Research Council, Washington, D.C., p. 6-15. 2002.

MACHUMU, K. S. *Enhancing the Existing Microscopic Simulation*. Dissertação. Universidade da Flórida. Modeling Practice for Express Lane Facilities, 2017.

MANJUNATHA, P; VORTISCH, P; MATHEW, T.V. *Methodology for the Calibration of VISSIM in Mixed Traffic*. TRB 2013 Annual Meeting, 2013.

MARTÍN, L.E. *Proposta Metodológica para modelagem microscópica de interseções semaforizadas*. 2018. 197f. Tese de Doutorado Universidade Federal do Ceará, 2018.

Manual de Estudos de Tráfego – Publicação IPR 723; Departamento Nacional de Infraestrutura de Transportes; Rio de Janeiro, 2006.

MCLEAN, J.R. *Two-lane highway traffic operations – Theory and Practice*. Transportation Studies, v.11. Gordon and Preach Science Publishers. Amsterdam. 1989.

MCTRANS (2010) CORSIM – User's Guide. TSIS Version 6.2, McTrans, University of Florida.

MEDEIROS, A. L.; CASTRO NETO, M. M.; LOUREIRO, C. F. G.; BESSA JR, J. E.; Calibração de redes viárias urbanas microssimuladas com o uso de algoritmos genéticos. XXVII ANPET - Congresso Nacional de Pesquisa e Ensino em Transportes, 2013.

MELO, R. A.; *Faixas Adicionais Para Aclives de Rodovias Brasileiras*. Tese de Doutorado, Escola de Engenharia de São Carlos, Universidade de São Paulo, 2002.

MELO, R.A.; SETTI, J. R. A.. Faixas Adicionais para aclives de rodovias de pista simples brasileiras: uma adaptação dos critérios da ASSHTO. Revista Transportes, Vol XI, pgs 41-48. 2003.

MELO, R.A.; SETTI, J. R. A.. Fluxos mínimos de veículos para implantação de faixas adicionais em aclives de rodovias de pista simples. TRANSPORTES, v. XV, n. 1, p. 16-23, junho 2007, ISSN: 1415-7713.

MON-MA, M. L.; Adaptação do HCM-2000 para rodovias de pista simples com faixas adicionais típicas do Estado de São Paulo. Tese de Doutorado, Escola de Engenharia de São Carlos, Universidade de São Paulo, 2008.

MORENO, A. T., LLORCA, C., SAYED, T., GARCÍA, A.; Field Evaluation of Traffic Performance Measures for Two-Lane Highways in Spain. 93rd Transportation Research Board Annual Meeting, 1–17. 2014.

MORENO, A. T.; LLORCA, C.; WASHBURN, S. S.; BESSA, J. E.; GARCIA, A.; Effect of Average Passing Zone Length on Spanish Two-Lane Highways Traffic Performance. 95th TRB Annual Meeting Compendium of Papers. Washington, D. C. 2016.

MORENO, A. T.; LLORCA, C.; WASHBURN, S. S.; BESSA, J. E.; HALE, D. K.; GARCIA, A. . *Modification of the Highway Capacity Manual two-lane highway analysis procedure for Spanish conditions*. JOURNAL OF ADVANCED TRANSPORTATION, v. 50, p. 1650-1665, 2016.

MORENO, A. T.; LLORCA, C.; WASHBURN, S. S.; BESSA JÚNIOR, J. E.; GARCIA, A.; *Operational Considerations of Passing Zones for Two-lane Highways: Spanish Case Study*. Promet-Traffic & Transportation, v. 30, p. 601-612, 2018

MORRAL, J.; WERNER, F.E A. Measuring level of service of two-lane highways by overtakings. Transportation Research Record 1287, TRB, National Research Council, Washington, D.C, p. 62-69, 1990.

MOTIYAMAA, Y.; MITUHASHIB, M.; HIRAIC, S.; OGUCHID, T. *The Effect on Lane Utilization and traffic Capacity of Adding an Auxiliary Lane*. 6th International Symposium on highway Capacity and Quality service, Estocolmo, Suécia, 2011.

MWESIGE, G.; FARAH, H.; BAGAMPADDE, U.; KOUTSOPOULOS, H.; Effect of Passing Zone Length on Operational and Safety of Two-Lane Rural Highways in Uganda. IATSS Research 41, 2017.

PARK, B.; QI, H.; *Development and evaluation of a procedure for the calibration of simulation models.* Transportation Research Record 1934, TRB, National Research Council, Washington, D.C., p. 208-217. 2005.

PENMETSA, P., GHOSH, I., CHANDRA, S.; Evaluation of Performance Measures for Two-Lane Intercity Highways under Mixed Traffic Conditions. Journal of Transportation Engineering, 141(10), 1–7. 2015.

PEREIRA, H. M.; BESSA JÚNIOR, J. E. . Análise comparativa de métodos para cálculo do nível de serviço em rodovias de pista simples. In: XXXI Congresso de Pesquisa e Ensino em Transportes, Recife. Anais do XXXI Congresso de Pesquisa e Ensino em Transportes. Rio de Janeiro: ANPET, 2017

PTV. VISSIM Fórum - Linkedin. Disponível em: https://www.linkedin.com/grp/post/2524087-251652670?goback=%2Egna_2524087. Acesso em fevereiro de 2019.

PTV, *VISSIM 10 User Manual*. Planning Transport Verkehr AG – PTV Vision, Karlsruhe, Germany, 2018.

ROESS, R. P.; PRASSAS, E. S.; MCSHANE, W. R. *Traffic Engineering*. 4th Edition. Pearson. 2011.

SETTI, J. R.; BESSA JÚNIOR, J. E.; EGAMI, C. Y.; MON-MA, M. L.. Adaptação do HCM2000 para análise da capacidade e do nível de serviço em rodovias de pista simples no Brasil. Transportes (Rio de Janeiro), v. 19, p. 66-78, 2011.

TANEKA, D.; TROUTBECK, R.. *Estimating Meeting and Overtaking Rates on Low Volume Roads*. Third International Symposium on Highway Capacity. p.998-1005. 1998.

TAPANI, A. *Versatile Model for Simulation of Rural Road Traffic*. Transportation Research Record 1934, TRB, National Research Council, Washington, D.C., p. 169-178, 2005.

TRB (1985) *Highway Capacity Manual 1985*. Transportation Research Board. Washington D.C.

TRB (2000) *Highway Capacity Manual 2000*. Transportation Research Board. Washington D.C.

TRB (2010) *Highway Capacity Manual 2010*. Transportation Research Board. Washington D.C.

TRIOLA, M. F. Tradução de Vera Regina Lima de Farias e Flores. *Introdução à estatística. 10* ed. Rio de Janeiro: Livros Técnicos Científicos Editora S.A (LTC), 2008.

TKK; *HUTSIM – A microscopic traffic simulator*. Laboratory of Transportation Engineering, Helsinki University of Technology, 2011.

TSS; Aimsun Next Manual. Barcelona, Espanha, 2018.

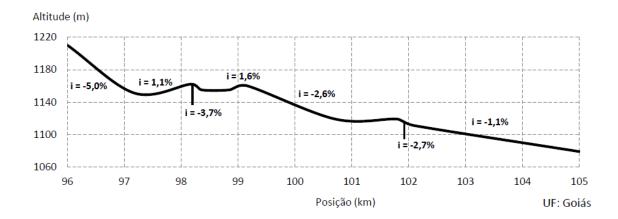
UTIMURA, F. S.; SETTI, J. R.; EGAMI, C. Y.; MON-MA, M. L.. Verificação da acurácia de estimativas do nível de serviço em rodovias de pista simples no estado de São Paulo. In: XXI Congresso de Pesquisa e Ensino em Transportes, 2007, Rio de Janeiro. Panorama Nacional da Pesquisa em Transportes 2007. Rio de Janeiro: ANPET, 2007.

YAQIN, Q.; JIAN, X.; HONGGI, L.; FENGXIANG, G.; e HUASEN, W.; *Driving Simulation Study of Traffic Flow Characteristics of The Climbing Lane on a Two-Lane Rural Road.* ICCTP 2009: Critical Issues in Transportation Systems Planning, Development, and Management, 2009

YU, M.; e FAN, W.; *Calibration of microscopic traffic simulation models using metaheuristic algorithms*. International Journal of Transportation Science and Technology, v. 6, n. 1, p. 63-77. 2017.

WASHBURN, S.; LI J.. *Development of a Simulation Program for Two-Lane Highway Analysis*. Center for Multimodal Solutions for Congestion Mitigation (CMS), CMS Project Number: 2008-002, Gainesville, FL, EUA. 2010.

WASHBURN, S.S., WATSON, D.; BIAN, Z.; LUTTINEN, T.; AL-KAISY, A.; JAFARI, A.; DOWLING, R.; ELIAS, A.. Improved analysis of Two-Lane Highway Capacity and Operational Performance. Final Report for NCHRP Project 17-65 National Cooperative Highway Research Program, TRB, Washington, Web-Only Document 255. 2018.


WIEDEMANN, R.; REITER, U. Microscopic Traffic Simulation - The Simulation System Mission – Background and Actual State, 1992.

APENDICE A

Nesse Apêndice são representadas as informações dos perfis vertical e horizontal e as informações da sinalização dos segmentos da Rodovia BR-040 onde foram coletados os dados de tráfego nos feriados da Semana Santa e da Independência de 2018.

Figura A.1: Perfis vertical e horizontal do trecho entre os km's 96 e 105 da BR-040

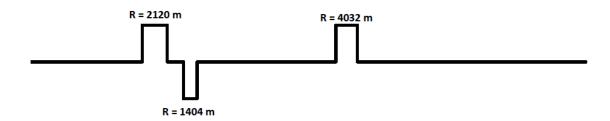
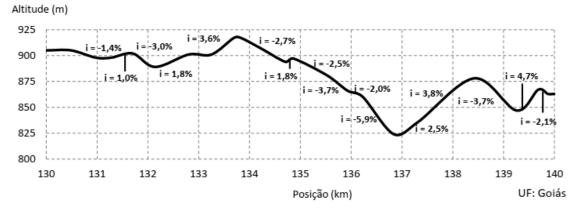



Figura A.2: Perfis vertical e horizontal do trecho entre os km's 130 e 140 da BR-040

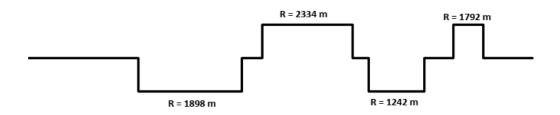


Figura A.3: Perfis Vertical e Horizontal do trecho entre os km's 140 e 150 da BR-040

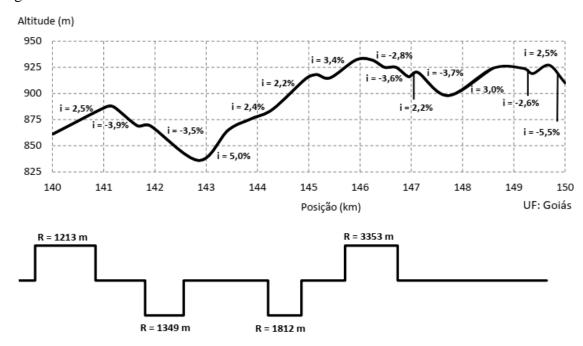



Figura A.4: Perfis Vertical e Horizontal do trecho entre os km's 9 e 19 da BR-040 Altitude (m)

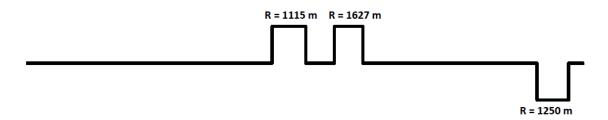


Figura A.5: Perfis Vertical e Horizontal do trecho entre os km's 19 e 29 da BR-040 Altitude (m)

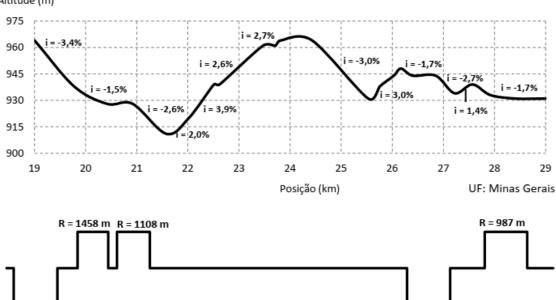
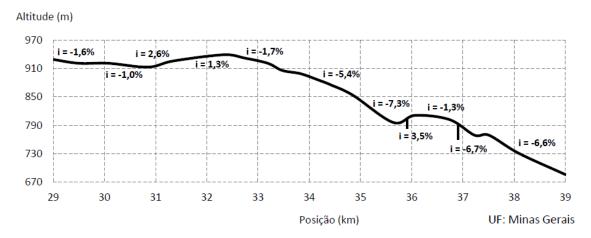



Figura A.6: Perfis Vertical e Horizontal do trecho entre os km's 29 e 29 da BR-040

R = 1102 m

R = 1272 m

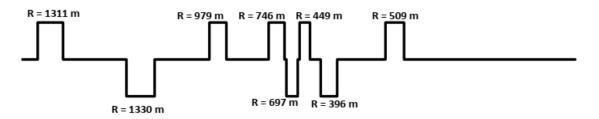
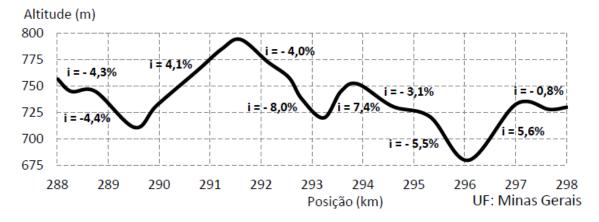



Figura A.7: Perfis Vertical e Horizontal do trecho entre os km's 288 e 298 da BR-040

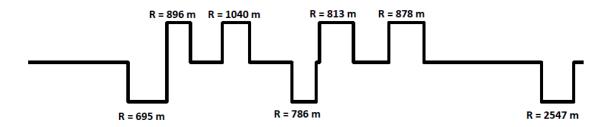
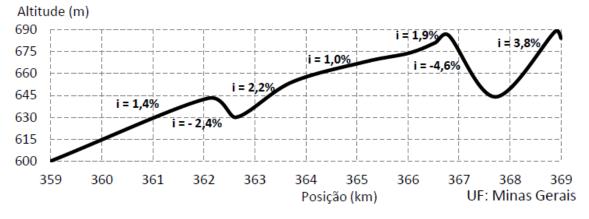



Figura A.8: Perfis Vertical e Horizontal do trecho entre os km's 359 e 369 da BR-040

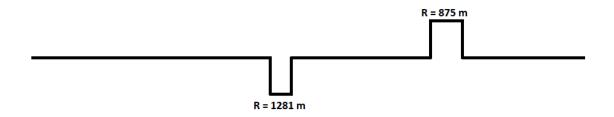


Figura A.9: Perfis Vertical e Horizontal do trecho entre os km's 369 e 379 da BR-040

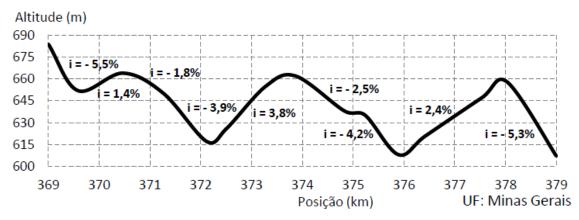
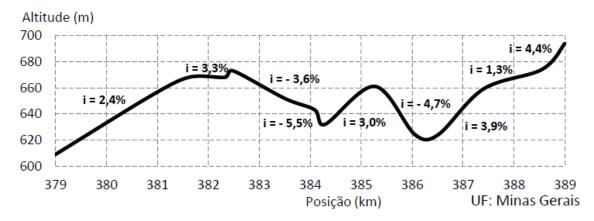



Figura A.10: Perfis Vertical e Horizontal do trecho entre os km's 379 e 389 da BR-040

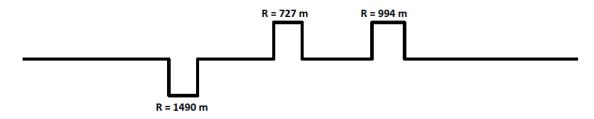
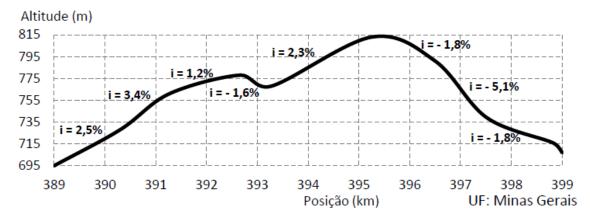



Figura A.11: Perfis Vertical e Horizontal do trecho entre os km's 379 e 389 da BR-040

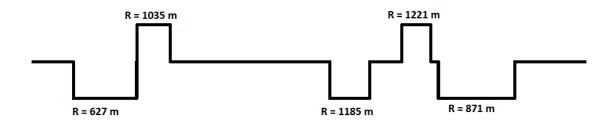
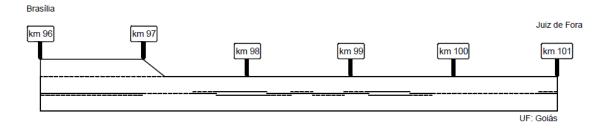



Figura A.12: Sinalização horizontal do trecho entre os km's 96 e 105 da BR-040

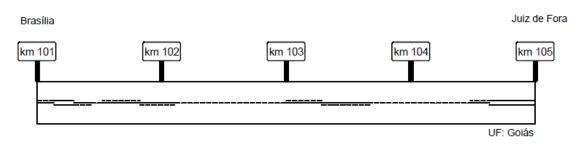


Figura A.13: Sinalização horizontal do trecho entre os km's 130 e 140 da BR-040

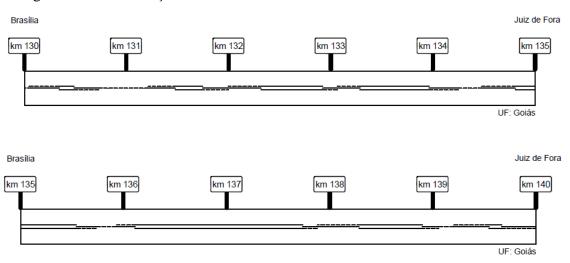


Figura A.14: Sinalização horizontal do trecho entre os km's 140 e 150 da BR-040

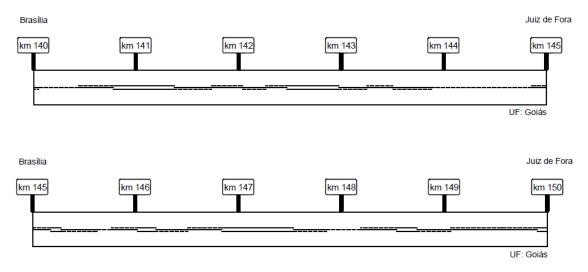


Figura A.15: Sinalização horizontal do trecho entre os km's 9 e 19 da BR-040

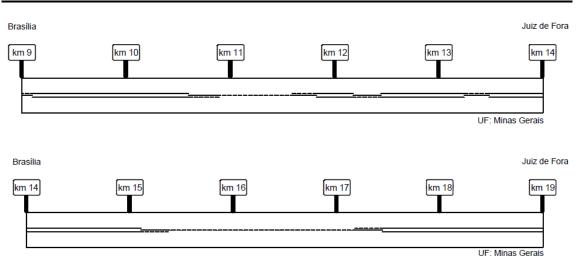


Figura A.16: Sinalização horizontal do trecho entre os km's 19 e 29 da BR-040

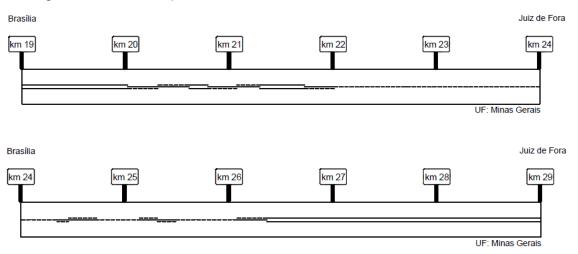


Figura A.17: Sinalização Horizontal do trecho entre os km's 29 e 39 da BR-040

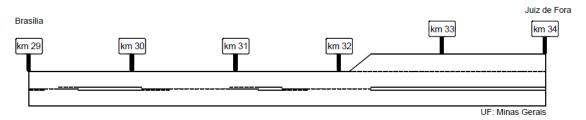


Figura A.18: Sinalização horizontal do trecho entre os km's 288 e 298 da BR-040

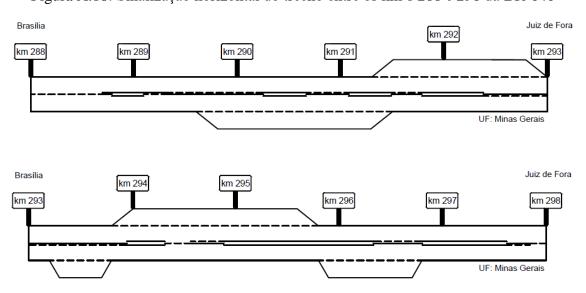


Figura A.19: Sinalização horizontal do trecho entre os km's 359 e 369 da BR-040

Figura A.20: Sinalização horizontal do trecho entre os km's 369 e 379 da BR-040

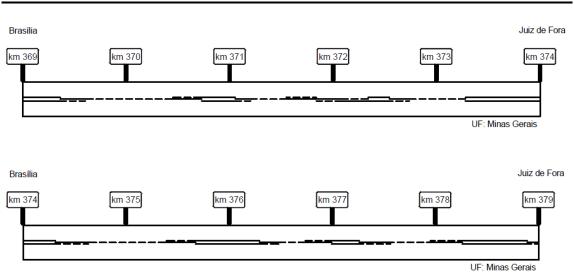


Figura A.21: Sinalização horizontal do trecho entre os km's 379 e 389 da BR-040

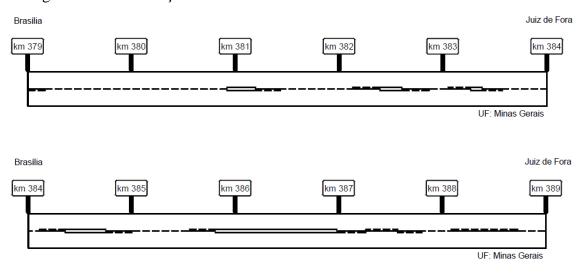


Figura A.22: Sinalização horizontal do trecho entre os km's 389 e 399 da BR-040

APÊNDICE B

Nesse Apêndice são apresentadas as condições geométricas dos trechos hipotéticos modelados no VISSIM para as simulações (Tabelas B.1 a B.5), bem como os critérios adotados para simulação com faixa adicional de subida (Tabelas B.6 a B.10).

Tabela B.1: Modelos de Geometria Hipotética – COG 1

	G 1 - I		51-II		3 1- III		- 1 - IV	COC	31-V
Rampa	Extensão								
(%)	(m)								
-									
1	467	0	669	2	328	2	290	0	311
-4	57	-6	11	-2	280	-2	259	0	632
1	742	4	96	1	250	3	110	1	607
-2	238	0	758	-6	129	-1	754	0	673
1	689	0	752	1	246	0	731	0	526
-1	723	-1	408	-2	289	0	291	-8	129
1	691	1	542	1	387	0	587	1	474
0	244	-6	96	-4	97	0	546	-2	211
1	771	0	586	6	170	1	545	0	613
0	596	0	731	0	706	-1	238	0	784
1	627	0	508	1	155	1	553	1	411
0	572	0	525	-2	87	-4	23	0	718
1	540	0	332	0	452	1	744	1	300
0	572	0	383	0	651	-1	459	0	623
1	468	1	441	2	294	1	701	1	183
-1	772	-2	277	0	423	-1	647	-3	171
1	446	1	451	0	529	0	379	0	714
-4	34	0	578	-4	81	-3	135	-2	276
0	629	8	81	0	514	0	0	0	231
-1	122	0	455	-1	295	0	290	0	79
		1	328	2	242	0	777	1	70
		-1	301	-1	467	-1	643	-6	116
		0	480	1	791	0	298	0	495
		-1	211	0	601			-7	184
				0	414			1	185
				0	464			-1	284
				0	658				
Total (m)	10.000								

(cont.) Tabela B.1: Modelos de Geometria Hipotética – COG 1

COG	1 - VI	COG	1 - VII	COG	1- VIII	COG	1 - IX	COC	31-X
Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão
(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)
	251	1	270	0	410	0	225	0	222
2	351	1	270	0	418	0	235	0	333
0	625	0	322	-3	192	-1	439	-1	518
0	626	7	112	0	114	1	539	1	523
0	670	-3	87	0	763	0	422	0	372
2	132	0	696	1	409	1	776	4	103
-1	347	-1	659	-2	391	-1	561	0	627
0	29	2	278	0	360	2	319	0	575
0	516	-1	214	-8	40	-2	212	-7	39
1	712	0	478	0	722	0	642	0	796
0	709	-1	385	0	723	0	599	-1	492
0	793	0	598	1	107	1	627	0	616
0	708	-1	253	-8	163	-1	791	0	87
7	104	2	326	1	615	0	268	1	609
-1	202	-2	366	0	679	0	577	0	356
7	182	0	335	1	645	0	707	0	762
-1	214	-1	215	-1	472	0	623	-5	199
0	494	1	671	2	337	2	247	1	751
-2	269	0	777	0	396	-2	11	-1	798
0	683	1	476	1	743	1	209	0	754
0	433	0	446	-1	452	-5	55	0	436
1	311	3	144	1	634	0	677	3	149
-2	322	-1	632	-1	336	-1	464	-3	105
1	305	1	515	4	46				
-2	263	-1	745	-1	243				
Total (m)	10.000	Total (m)	10.000	Total (m)	10.000	Total (m)	10.000	Total (m)	10.000

Tabela B.2: Modelos de Geometria Hipotética – COG 2

	G 2 - I		5 2 - II		ica – COC 3 2- III		2 - IV	COC	G 2 - V
Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão
(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)
	420	0	0.50	1	1070	1	721	1	C10
1	429	0	858	1	1279	1	721	1	649
-1	1058	0	1397	0	1379	0	819	-3	712
9	95	2	752	5	341	3	383	2	506
-1	1105	0	861	-1	413	-3	757	0	992
3	551	0	1074	4	276	9	146	2	440
-8	93	-2	330	0	1115	-9	21	0	851
4	304	1	698	1	749	1	819	9	170
-8	67	-1	1256	-3	704	-5	363	-9	167
2	228	0	823	1	636	2 -3	798	2	668
-1	1284	-1	689	-4	311	-3	679	-8	184
0	1044	1	923	1	1351	5	259	4	341
-1	1386	-5	310	-6	354	-2	778	-1	1336
8	134	9	29	3	384	1	852	1	997
-2	492			-9	68	-1	718	-1	996
0	1123			2	640	0	1356	1	800
2	607					-2	531	-8	109
								9	82
Total		Total		Total		Total		Total	
(m)	10.000	(m)	10.000	(m)	10.000	(m)	10.000	(m)	10.000
	2 - VI		2 - VII		2- VIII		2 - IX		G 2 - X
Rampa	Extensão								
	LAUCHSAU	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão
(%)	(m)	Rampa (%)	Extensão (m)	Rampa (%)	Extensão (m)	Rampa (%)	Extensão (m)	Rampa (%)	Extensão (m)
			(m)	(%)	(m)	(%)	(m)		
(%) 0 -4	(m)	(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)
0 -4 2	(m) 1298	(%) 1	(m) 568	(%) 8	(m) 20	0	(m) 1385	(%) 1	(m)
(%) 0 -4	(m) 1298 206	(%) 1 -3	(m) 568 456	(%) 8 0	20 1133	(%) 0 -1	(m) 1385 1344	(%) 1 0	984 862
0 -4 2	(m) 1298 206 227	(%) 1 -3 1	(m) 568 456 750	8 0 1	20 1133 1135	0 -1 1	(m) 1385 1344 1280	(%) 1 0 1	984 862 876
0 -4 2 -2	(m) 1298 206 227 418	(%) 1 -3 1 0	568 456 750 1393	8 0 1 -2	20 1133 1135 450	0 -1 1 -8	(m) 1385 1344 1280 17	(%) 1 0 1 -1	984 862 876 1210
(%) 0 -4 2 -2 1	(m) 1298 206 227 418 1105	(%) 1 -3 1 0 1	568 456 750 1393 644	8 0 1 -2 0	20 1133 1135 450 1268	0 -1 1 -8 3 -1	(m) 1385 1344 1280 17 308	(%) 1 0 1 -1 2	984 862 876 1210 723
0 -4 2 -2 1 -1	(m) 1298 206 227 418 1105 1117	1 -3 1 0 1 0	568 456 750 1393 644 854	8 0 1 -2 0 -9	20 1133 1135 450 1268 83	0 -1 1 -8 3	(m) 1385 1344 1280 17 308 1012	1 0 1 -1 2 -3	984 862 876 1210 723 755
(%) 0 -4 2 -2 1 -1 1	(m) 1298 206 227 418 1105 1117 754	(%) 1 -3 1 0 1 0 0	(m) 568 456 750 1393 644 854 1197	8 0 1 -2 0 -9 1	20 1133 1135 450 1268 83 1190	0 -1 1 -8 3 -1 8	(m) 1385 1344 1280 17 308 1012 44	(%) 1 0 1 -1 2 -3 1	984 862 876 1210 723 755 916
0 -4 2 -2 1 -1 1 -4 9	(m) 1298 206 227 418 1105 1117 754 302 162	(%) 1 -3 1 0 1 0 0 -1 8	(m) 568 456 750 1393 644 854 1197 818 43	8 0 1 -2 0 -9 1 -1	20 1133 1135 450 1268 83 1190 1070 185	0 -1 1 -8 3 -1 8 -2 0	(m) 1385 1344 1280 17 308 1012 44 711 1377	(%) 1 0 1 -1 2 -3 1 -3	984 862 876 1210 723 755 916 304 936
(%) 0 -4 2 -2 1 -1 1 -4	(m) 1298 206 227 418 1105 1117 754 302 162 519	(%) 1 -3 1 0 1 0 -1	(m) 568 456 750 1393 644 854 1197 818 43 1119	8 0 1 -2 0 -9 1 -1 8	20 1133 1135 450 1268 83 1190 1070	0 -1 1 -8 3 -1 8 -2	(m) 1385 1344 1280 17 308 1012 44 711 1377 72	(%) 1 0 1 -1 2 -3 1 -3 1	984 862 876 1210 723 755 916 304 936 289
0 -4 2 -2 1 -1 1 -4 9 -1 1	(m) 1298 206 227 418 1105 1117 754 302 162 519 1362	(%) 1 -3 1 0 1 0 -1 8 0 1	(m) 568 456 750 1393 644 854 1197 818 43 1119 1089	8 0 1 -2 0 -9 1 -1 8 -1 1	20 1133 1135 450 1268 83 1190 1070 185 642 1180	0 -1 1 -8 3 -1 8 -2 0 -8 1	(m) 1385 1344 1280 17 308 1012 44 711 1377 72 662	(%) 1 0 1 -1 2 -3 1 -3 1 -4 5	984 862 876 1210 723 755 916 304 936 289 366
0 -4 2 -2 1 -1 1 -4 9 -1 1 -6	(m) 1298 206 227 418 1105 1117 754 302 162 519 1362 341	(%) 1 -3 1 0 1 0 -1 8 0 1 -6	(m) 568 456 750 1393 644 854 1197 818 43 1119 1089 395	8 0 1 -2 0 -9 1 -1 8 -1 1 -2	20 1133 1135 450 1268 83 1190 1070 185 642 1180 602	0 -1 1 -8 3 -1 8 -2 0 -8 1 -3	(m) 1385 1344 1280 17 308 1012 44 711 1377 72 662 539	(%) 1 0 1 -1 2 -3 1 -3 1 -4 5 -3	984 862 876 1210 723 755 916 304 936 289 366 574
0 -4 2 -2 1 -1 1 -4 9 -1 1 -6 0	(m) 1298 206 227 418 1105 1117 754 302 162 519 1362 341 1231	(%) 1 -3 1 0 1 0 -1 8 0 1 -6 2	(m) 568 456 750 1393 644 854 1197 818 43 1119 1089 395 431	8 0 1 -2 0 -9 1 -1 8 -1 1	20 1133 1135 450 1268 83 1190 1070 185 642 1180	0 -1 1 -8 3 -1 8 -2 0 -8 1	(m) 1385 1344 1280 17 308 1012 44 711 1377 72 662	(%) 1 0 1 -1 2 -3 1 -3 1 -4 5 -3 2	984 862 876 1210 723 755 916 304 936 289 366 574 293
0 -4 2 -2 1 -1 1 -4 9 -1 1 -6 0 -1	(m) 1298 206 227 418 1105 1117 754 302 162 519 1362 341 1231 496	(%) 1 -3 1 0 1 0 -1 8 0 1 -6	(m) 568 456 750 1393 644 854 1197 818 43 1119 1089 395	8 0 1 -2 0 -9 1 -1 8 -1 1 -2	20 1133 1135 450 1268 83 1190 1070 185 642 1180 602	0 -1 1 -8 3 -1 8 -2 0 -8 1 -3	(m) 1385 1344 1280 17 308 1012 44 711 1377 72 662 539	(%) 1 0 1 -1 2 -3 1 -3 1 -4 5 -3 2 -8	984 862 876 1210 723 755 916 304 936 289 366 574 293 44
0 -4 2 -2 1 -1 1 -4 9 -1 1 -6 0 -1 9	(m) 1298 206 227 418 1105 1117 754 302 162 519 1362 341 1231 496 197	(%) 1 -3 1 0 1 0 -1 8 0 1 -6 2	(m) 568 456 750 1393 644 854 1197 818 43 1119 1089 395 431	8 0 1 -2 0 -9 1 -1 8 -1 1 -2	20 1133 1135 450 1268 83 1190 1070 185 642 1180 602	0 -1 1 -8 3 -1 8 -2 0 -8 1 -3	(m) 1385 1344 1280 17 308 1012 44 711 1377 72 662 539	(%) 1 0 1 -1 2 -3 1 -4 5 -3 2 -8 0	984 862 876 1210 723 755 916 304 936 289 366 574 293 44 849
0 -4 2 -2 1 -1 1 -4 9 -1 1 -6 0 -1 9 -4	(m) 1298 206 227 418 1105 1117 754 302 162 519 1362 341 1231 496	(%) 1 -3 1 0 1 0 -1 8 0 1 -6 2 -6	(m) 568 456 750 1393 644 854 1197 818 43 1119 1089 395 431	(%) 8 0 1 -2 0 -9 1 -1 8 -1 1 -2 1	20 1133 1135 450 1268 83 1190 1070 185 642 1180 602	0 -1 1 -8 3 -1 8 -2 0 -8 1 -3 1	(m) 1385 1344 1280 17 308 1012 44 711 1377 72 662 539	(%) 1 0 1 -1 2 -3 1 -3 1 -4 5 -3 2 -8 0 -9	984 862 876 1210 723 755 916 304 936 289 366 574 293 44
0 -4 2 -2 1 -1 1 -4 9 -1 1 -6 0 -1 9	(m) 1298 206 227 418 1105 1117 754 302 162 519 1362 341 1231 496 197	(%) 1 -3 1 0 1 0 -1 8 0 1 -6 2	(m) 568 456 750 1393 644 854 1197 818 43 1119 1089 395 431	8 0 1 -2 0 -9 1 -1 8 -1 1 -2	20 1133 1135 450 1268 83 1190 1070 185 642 1180 602	0 -1 1 -8 3 -1 8 -2 0 -8 1 -3	(m) 1385 1344 1280 17 308 1012 44 711 1377 72 662 539	(%) 1 0 1 -1 2 -3 1 -4 5 -3 2 -8 0	984 862 876 1210 723 755 916 304 936 289 366 574 293 44 849

Tabela B.3: Modelos de Geometria Hipotética – COG 3

	G 3 - I		3 - II		3- III		3 - IV	COC	3 - V
Rampa	Extensão								
(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)
2	1295	1	1119	1	997	2	708	3	560
-6	223	-2	1305	-7	242	-7	299	-1	1084
2	1015	1	1030	3	766	2	771	4	509
-1	1195	-3	1041	-3	822	-7	395	-1	1149
7	324	1	1248	2	601	0	2392	3	661
-6	339	-3	459	-1	2028	-2	1326	0	1642
1	933	1	1082	2	1124	1	1203	0	2367
-2	1311	-3	1062	-1	1356	-1	1242	-3	453
2	787	2	1249	3	449	1	1244	2	719
-6	400	-4	405	-6	241	-4	420	-2	856
5	343			1	1374				
-1	1529								
6	306								
Total	10.000								
(m)		(m)		(m)		(m)		(m)	
	3 - VI		3 - VII		3- VIII		3 - IX		3 - X
Rampa	Extensão								
(%)	(m)								
			200						
1	1266	1	809	2	951	4	556	4	526
-1	1154	-3	599	-2	814	-4	466	-7	257
3	800	2	1067	1	1241	7	264	1	817
-7	332	-2	1051	-4	558	0	1964	-2	1259
0	1514	2	893	1	1137	2	880	0	2111
-1	1397	-1	1021	-7	356	-7	297	-1	1305
1	864	1	1499	4	421	2	1013	1	1087
-7	352	-2	1051	-3	408	-6	352	-1	1211
1	1504	1	1011	5	247	1	1409	1	951
-2	817	-2	999	-1	1225	-1	1526	-3	476
				3	431	7	366		
				-3	857	-3	907		
				7	279				
				-1	1075				
Total	10.000								
(m)	10.000								

Tabela B .4: Modelos de Geometria Hipotética – COG 4

COC	G 4 - I		5 4 - II		iica – COC 3 4- III	COG 4 - IV		COC	34-V
Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão
(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)
	4.50		1101		007	2	11.55		0.40
4	458	2	1104	2	835	2	1166	3	848
-5	690	-4	723	-4	429	-9	328	-4	901
5	485	2	806	8	390	4	587	4	531
-4	536	-3	767	-9	343	-8	338	-3	903
6	401	4	612	3	699	2	1044	7	349
-8	329	-4	716	-4	790	-5	480	-3	1222
3	993	3	1152	4	506	8	371	9	286
-4	1121	-4	922	-5	707	-5	669	-4	695
3	666	2	1111	5	478	8	359	3	891
-2	1247	-3	1356	-4	821	-3	756	-3	880
4	668	3	731	6	474	3	1043	4	655
-9	264			-3	1079	-4	1072	-4	897
8	276			3	1055	3	710	8	318
-3	1011			-5	449	-4	1077	-4	624
3	855			3	945				
Total	10,000	Total	10.000	Total	10.000	Total	10.000	Total	10.000
(m)	10.000	(m)	10.000	(m)	10.000	(m)	10.000	(m)	10.000
COG	4 - VI	COG	4 - VII	COG	4 - VIII	COG	4 - IX	COC	G 4 - X
Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão
(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)
			` '	(,0)	()	(70)	(111)	(70)	(111)
			. ,		. ,	1	, ,		
8	298	9	242	2	1200	-8	345	3	812
-3	994	-2	1261	2 -4	1200 686	-8 3	345 836	3 -4	812 530
-3 3	994 998	-2 6	1261 512	2 -4 7	1200 686 364	-8 3 -9	345 836 237	3 -4 8	812 530 257
-3 3 -5	994 998 499	-2 6 -9	1261 512 347	2 -4 7 -4	1200 686 364 495	-8 3 -9 3	345 836 237 876	3 -4 8 -5	812 530 257 529
-3 3 -5 2	994 998 499 828	-2 6 -9 2	1261 512 347 1192	2 -4 7 -4 4	1200 686 364 495 684	-8 3 -9 3 -3	345 836 237 876 883	3 -4 8 -5 8	812 530 257 529 378
-3 3 -5 2 -4	994 998 499 828 957	-2 6 -9 2 -4	1261 512 347 1192 605	2 -4 7 -4 4 -3	1200 686 364 495 684 715	-8 3 -9 3 -3 4	345 836 237 876 883 456	3 -4 8 -5 8 -5	812 530 257 529 378 571
-3 3 -5 2 -4 3	994 998 499 828 957 902	-2 6 -9 2 -4 7	1261 512 347 1192 605 205	2 -4 7 -4 4 -3 3	1200 686 364 495 684 715 799	-8 3 -9 3 -3 4 -8	345 836 237 876 883 456 359	3 -4 8 -5 8 -5 6	812 530 257 529 378 571 453
-3 3 -5 2 -4 3 -5	994 998 499 828 957 902 646	-2 6 -9 2 -4 7 -4	1261 512 347 1192 605 205 978	2 -4 7 -4 4 -3 3 -5	1200 686 364 495 684 715 799 797	-8 3 -9 3 -3 4 -8 3	345 836 237 876 883 456 359 1110	3 -4 8 -5 8 -5 6 -4	812 530 257 529 378 571 453 542
-3 3 -5 2 -4 3 -5 6	994 998 499 828 957 902 646 407	-2 6 -9 2 -4 7 -4 8	1261 512 347 1192 605 205 978 260	2 -4 7 -4 4 -3 3 -5 8	1200 686 364 495 684 715 799 797 234	-8 3 -9 3 -3 4 -8 3 -9	345 836 237 876 883 456 359 1110 381	3 -4 8 -5 8 -5 6 -4 3	812 530 257 529 378 571 453 542 897
-3 3 -5 2 -4 3 -5 6	994 998 499 828 957 902 646 407 991	-2 6 -9 2 -4 7 -4 8	1261 512 347 1192 605 205 978 260 776	2 -4 7 -4 4 -3 3 -5 8 -2	1200 686 364 495 684 715 799 797 234 1260	-8 3 -9 3 -3 4 -8 3 -9 2	345 836 237 876 883 456 359 1110 381 917	3 -4 8 -5 8 -5 6 -4 3 -9	812 530 257 529 378 571 453 542 897 299
-3 3 -5 2 -4 3 -5 6 -3 3	994 998 499 828 957 902 646 407 991 1043	-2 6 -9 2 -4 7 -4 8 -4 2	1261 512 347 1192 605 205 978 260 776 869	2 -4 7 -4 4 -3 3 -5 8 -2 9	1200 686 364 495 684 715 799 797 234 1260 394	-8 3 -9 3 -3 4 -8 3 -9 2 -4	345 836 237 876 883 456 359 1110 381 917 981	3 -4 8 -5 8 -5 6 -4 3 -9 2	812 530 257 529 378 571 453 542 897 299 879
-3 3 -5 2 -4 3 -5 6 -3 3 -5	994 998 499 828 957 902 646 407 991 1043 781	-2 6 -9 2 -4 7 -4 8 -4 2	1261 512 347 1192 605 205 978 260 776 869 436	2 -4 7 -4 4 -3 3 -5 8 -2 9	1200 686 364 495 684 715 799 797 234 1260 394 351	-8 3 -9 3 -3 4 -8 3 -9 2 -4 4	345 836 237 876 883 456 359 1110 381 917 981 758	3 -4 8 -5 8 -5 6 -4 3 -9 2 -5	812 530 257 529 378 571 453 542 897 299 879 584
-3 3 -5 2 -4 3 -5 6 -3 3	994 998 499 828 957 902 646 407 991 1043	-2 6 -9 2 -4 7 -4 8 -4 2 -6 3	1261 512 347 1192 605 205 978 260 776 869 436 946	2 -4 7 -4 4 -3 3 -5 8 -2 9 -9 4	1200 686 364 495 684 715 799 797 234 1260 394 351 629	-8 3 -9 3 -3 4 -8 3 -9 2 -4 4 -3	345 836 237 876 883 456 359 1110 381 917 981 758 940	3 -4 8 -5 8 -5 6 -4 3 -9 2 -5 3	812 530 257 529 378 571 453 542 897 299 879 584 857
-3 3 -5 2 -4 3 -5 6 -3 3 -5	994 998 499 828 957 902 646 407 991 1043 781	-2 6 -9 2 -4 7 -4 8 -4 2 -6 3	1261 512 347 1192 605 205 978 260 776 869 436 946 820	2 -4 7 -4 4 -3 3 -5 8 -2 9 -9 4 -5	1200 686 364 495 684 715 799 797 234 1260 394 351 629 554	-8 3 -9 3 -3 4 -8 3 -9 2 -4 4 4 -3 6	345 836 237 876 883 456 359 1110 381 917 981 758 940 431	3 -4 8 -5 8 -5 6 -4 3 -9 2 -5 3 -8	812 530 257 529 378 571 453 542 897 299 879 584 857 203
-3 3 -5 2 -4 3 -5 6 -3 3 -5	994 998 499 828 957 902 646 407 991 1043 781	-2 6 -9 2 -4 7 -4 8 -4 2 -6 3	1261 512 347 1192 605 205 978 260 776 869 436 946	2 -4 7 -4 4 -3 3 -5 8 -2 9 -9 4	1200 686 364 495 684 715 799 797 234 1260 394 351 629 554 406	-8 3 -9 3 -3 4 -8 3 -9 2 -4 4 -3	345 836 237 876 883 456 359 1110 381 917 981 758 940	3 -4 8 -5 8 -5 6 -4 3 -9 2 -5 3 -8 4	812 530 257 529 378 571 453 542 897 299 879 584 857 203 425
-3 3 -5 2 -4 3 -5 6 -3 3 -5	994 998 499 828 957 902 646 407 991 1043 781	-2 6 -9 2 -4 7 -4 8 -4 2 -6 3	1261 512 347 1192 605 205 978 260 776 869 436 946 820	2 -4 7 -4 4 -3 3 -5 8 -2 9 -9 4 -5	1200 686 364 495 684 715 799 797 234 1260 394 351 629 554	-8 3 -9 3 -3 4 -8 3 -9 2 -4 4 4 -3 6	345 836 237 876 883 456 359 1110 381 917 981 758 940 431	3 -4 8 -5 8 -5 6 -4 3 -9 2 -5 3 -8 4 -3	812 530 257 529 378 571 453 542 897 299 879 584 857 203
-3 3 -5 2 -4 3 -5 6 -3 3 -5	994 998 499 828 957 902 646 407 991 1043 781	-2 6 -9 2 -4 7 -4 8 -4 2 -6 3	1261 512 347 1192 605 205 978 260 776 869 436 946 820	2 -4 7 -4 4 -3 3 -5 8 -2 9 -9 4 -5 4	1200 686 364 495 684 715 799 797 234 1260 394 351 629 554 406	-8 3 -9 3 -3 4 -8 3 -9 2 -4 4 4 -3 6	345 836 237 876 883 456 359 1110 381 917 981 758 940 431	3 -4 8 -5 8 -5 6 -4 3 -9 2 -5 3 -8 4	812 530 257 529 378 571 453 542 897 299 879 584 857 203 425
-3 3 -5 2 -4 3 -5 6 -3 3 -5	994 998 499 828 957 902 646 407 991 1043 781	-2 6 -9 2 -4 7 -4 8 -4 2 -6 3	1261 512 347 1192 605 205 978 260 776 869 436 946 820	2 -4 7 -4 4 -3 3 -5 8 -2 9 -9 4 -5 4	1200 686 364 495 684 715 799 797 234 1260 394 351 629 554 406	-8 3 -9 3 -3 4 -8 3 -9 2 -4 4 4 -3 6	345 836 237 876 883 456 359 1110 381 917 981 758 940 431	3 -4 8 -5 8 -5 6 -4 3 -9 2 -5 3 -8 4 -3	812 530 257 529 378 571 453 542 897 299 879 584 857 203 425 971

Tabela B.5: Modelos de Geometria Hipotética – COG 5

	G 5 - I		3 5 - II		5 - III		5 5 - IV	COC	G 5 - V
Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão
(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)
9	847	7	1104	7	1740	7	555	5	1235
-9	1389	-6	723	-6	1144	-9	1223	-2	2156
9	670	2	806	8	1239	8	869	3	1170
-7	1451	-8	767	-7	415	-7	894	-3	1295
9	482	8	612	9	759	6	999	8	1161
-9	1123	-8	716	-6	505	-5	769	-4	830
7	581	9	1152	5	1328	7	736	9	607
-7	1020	-5	922	-5	999	-7	1287	-1	1546
9	519	6	1111	7	508	5	1069		
-7	1918		1356	-3	1363	-1	1642		
			731						
Total	10.000	Total	10.000	Total	10.000	Total	10.000	Total	10.000
(m)		(m)		(m)		(m)		(m)	
COG	5 - VI	COG	5 - VII	COG	5 - VIII	COG	5 5 - IX	COC	G 5 - X
Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão	Rampa	Extensão
Rampa (%)	Extensão (m)	Rampa (%)	Extensão (m)	Rampa (%)	Extensão (m)	Rampa (%)	Extensão (m)	Rampa (%)	Extensão (m)
(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)	(%)	(m)
7	(m) 527	(%) 8	(m)	(%) 8	(m) 1005	(%)	(m) 933	(%) 9	(m) 1565
(%) 7 -8	527 845	(%) 8 -8	(m) 1296 1088	(%) 8 -7	(m) 1005 462	(%) 4 -5	933 971	(%) 9 -7	(m) 1565 520
7 -8 9	527 845 811	(%) 8 -8 9	(m) 1296 1088 674	(%) 8 -7 8	(m) 1005 462 492	(%) 4 -5 8	933 971 465	9 -7 3	(m) 1565 520 1239
(%) 7 -8 9 -6	527 845 811 1162	(%) 8 -8 9 -4	(m) 1296 1088 674 1024	8 -7 8 -8	1005 462 492 826	(%) 4 -5 8 -6	933 971 465 429	9 -7 3 -9	(m) 1565 520 1239 501
(%) 7 -8 9 -6 5	527 845 811 1162 1172	(%) 8 -8 9 -4 8	(m) 1296 1088 674 1024 421	8 -7 8 -8 5	1005 462 492 826 739	(%) 4 -5 8 -6 5	933 971 465 429 993	9 -7 3 -9 4	(m) 1565 520 1239 501 677
7 -8 9 -6 5 -8	527 845 811 1162 1172 698	8 -8 9 -4 8 -7	(m) 1296 1088 674 1024 421 1352	8 -7 8 -8 5 -8	1005 462 492 826 739 493	(%) 4 -5 8 -6 5 -5	933 971 465 429 993 942	9 -7 3 -9 4 -7	(m) 1565 520 1239 501 677 1131
(%) 7 -8 9 -6 5 -8 6	527 845 811 1162 1172 698 409	8 -8 9 -4 8 -7 3	(m) 1296 1088 674 1024 421 1352 1072	8 -7 8 -8 5 -8 6	(m) 1005 462 492 826 739 493 581	(%) 4 -5 8 -6 5 -5 9	933 971 465 429 993 942 649	9 -7 3 -9 4 -7 9	(m) 1565 520 1239 501 677 1131 857
7 -8 9 -6 5 -8 6 -4	527 845 811 1162 1172 698 409 890	8 -8 9 -4 8 -7 3 -6	(m) 1296 1088 674 1024 421 1352 1072 608	8 -7 8 -8 5 -8 6 -7	(m) 1005 462 492 826 739 493 581 871	(%) 4 -5 8 -6 5 -5 9 -5	933 971 465 429 993 942 649 828	9 -7 3 -9 4 -7 9 -9	(m) 1565 520 1239 501 677 1131 857 633
(%) 7 -8 9 -6 5 -8 6 -4 8	527 845 811 1162 1172 698 409 890 542	8 -8 9 -4 8 -7 3 -6 3	(m) 1296 1088 674 1024 421 1352 1072 608 1240	8 -7 8 -8 5 -8 6 -7 9	(m) 1005 462 492 826 739 493 581 871 913	(%) 4 -5 8 -6 5 -5 9 -5 4	933 971 465 429 993 942 649 828 1192	9 -7 3 -9 4 -7 9 -9	(m) 1565 520 1239 501 677 1131 857 633 688
7 -8 9 -6 5 -8 6 -4 8 -6	527 845 811 1162 1172 698 409 890 542 994	8 -8 9 -4 8 -7 3 -6	(m) 1296 1088 674 1024 421 1352 1072 608	8 -7 8 -8 5 -8 6 -7 9	(m) 1005 462 492 826 739 493 581 871 913 432	(%) 4 -5 8 -6 5 -5 9 -5 4 -4	933 971 465 429 993 942 649 828 1192 802	9 -7 3 -9 4 -7 9 -9	(m) 1565 520 1239 501 677 1131 857 633 688 404
7 -8 9 -6 5 -8 6 -4 8 -6 6	527 845 811 1162 1172 698 409 890 542 994 821	8 -8 9 -4 8 -7 3 -6 3	(m) 1296 1088 674 1024 421 1352 1072 608 1240	8 -7 8 -8 5 -8 6 -7 9 -9	1005 462 492 826 739 493 581 871 913 432 726	(%) 4 -5 8 -6 5 -5 9 -5 4 -4 7	933 971 465 429 993 942 649 828 1192 802 587	9 -7 3 -9 4 -7 9 -9	(m) 1565 520 1239 501 677 1131 857 633 688
7 -8 9 -6 5 -8 6 -4 8 -6 6 8	527 845 811 1162 1172 698 409 890 542 994 821 565	8 -8 9 -4 8 -7 3 -6 3	(m) 1296 1088 674 1024 421 1352 1072 608 1240	8 -7 8 -8 5 -8 6 -7 9 -9 5 -8	1005 462 492 826 739 493 581 871 913 432 726 899	(%) 4 -5 8 -6 5 -5 9 -5 4 -4	933 971 465 429 993 942 649 828 1192 802	9 -7 3 -9 4 -7 9 -9	(m) 1565 520 1239 501 677 1131 857 633 688 404
(%) 7 -8 9 -6 5 -8 6 -4 8 -6 6 8 -7	527 845 811 1162 1172 698 409 890 542 994 821	8 -8 9 -4 8 -7 3 -6 3 -8	(m) 1296 1088 674 1024 421 1352 1072 608 1240	8 -7 8 -8 5 -8 6 -7 9 -9 5 -8 4	1005 462 492 826 739 493 581 871 913 432 726	(%) 4 -5 8 -6 5 -5 9 -5 4 -4 7 -5	933 971 465 429 993 942 649 828 1192 802 587	(%) 9 -7 3 -9 4 -7 9 -9 9 -9	(m) 1565 520 1239 501 677 1131 857 633 688 404
7 -8 9 -6 5 -8 6 -4 8 -6 6 8	527 845 811 1162 1172 698 409 890 542 994 821 565	8 -8 9 -4 8 -7 3 -6 3	(m) 1296 1088 674 1024 421 1352 1072 608 1240	8 -7 8 -8 5 -8 6 -7 9 -9 5 -8	1005 462 492 826 739 493 581 871 913 432 726 899	(%) 4 -5 8 -6 5 -5 9 -5 4 -4 7	933 971 465 429 993 942 649 828 1192 802 587	9 -7 3 -9 4 -7 9 -9	(m) 1565 520 1239 501 677 1131 857 633 688 404

Tabela B.6: Subtrechos hipotéticos indicados para implantação de faixa adicional para um trecho hipotético com COG = 1COG 1 - I COG 1 - II COG 1 - III

Rampa		COG 1 - 1	l.		COG 1 - I	1		COG 1- II	1
(ȳc) (m) Adictional? (ȳc) (m) Adictional? 1 4 d7 Niio 0 669 Niio 2 238 Niio 1 742 Niio 4 96 Niio -2 280 Nião -2 238 Niio 0 758 Niio -6 129 Nião -1 689 Niio 0 752 Nião -1 2289 Nião -1 723 Nião -1 408 Nião -2 289 Nião 1 691 Nião -1 408 Nião -2 289 Nião 0 244 Nião -5 96 Nião -4 97 Nião 0 2596 Nião 0 508 Nião 6 170 Nião 1 627 Nião 0 352 Nião 0 452 Nião <td< th=""><th>Rampa</th><th>Extensão</th><th>Faixa</th><th>Rampa</th><th>Extensão</th><th>Faixa</th><th>Rampa</th><th>Extensão</th><th>Faixa</th></td<>	Rampa	Extensão	Faixa	Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
1									
-4									
1									
-2									
1									
1									
1 691									
0									
1									
0 596 Não 0 731 Não 0 706 Não 1 627 Não 0 508 Não 1 155 Não 0 572 Não 0 525 Não -2 87 Não 0 525 Não 0 452 Não 0 572 Não 0 383 Não 0 452 Não 1 468 Não 1 468 Não 1 441 Não 2 294 Não 1 468 Não 1 441 Não 0 529 Não 1 451 Não 0 629 Não 0 629 Não 0 453 Não 0 629 Não 1 328 Não 0 629 Não 0 453 Não 0 649 Não 0 1 328 Não 0 651 Não 1 1 122 Não 1 1 328 Não 0 514 Não 0 648 Não 1 1 328 Não 0 661 Não 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
1 627									
0 572	0								
1 540			Não			Não			
0 572	0	572	Não			Não	-2	87	
1	1	540	Não	0	332	Não	0	452	Não
1	0	572	Não	0	383	Não	0	651	Não
1	1	468	Não	1	441	Não	2	294	Não
1	-1			-2	277		0	423	
A 34							0		
O G29									
1									
1 328									
COG 1 - IV	1	122	1140						
COG 1 - IV									
COG 1 - IV									
COG 1 - IV									
COG 1 - IV				-1	211	Nao			Nao
COG 1 - IV									
Rampa									
Rampa (%) Extensão (m) Adicional?							0		
(%) (m) Adicional? (%) (m) Adicional? (%) (m) Adicional? 2 290 Não 0 311 Não 2 351 Não -2 259 Não 0 632 Não 0 625 Não 3 110 Não 1 607 Não 0 626 Não -1 754 Não 0 673 Não 0 670 Não 0 731 Não 0 526 Não 2 132 Não 0 291 Não -8 129 Não -1 347 Não 0 587 Não 1 474 Não 0 29 Não 0 546 Não -2 211 Não 0 516 Não 1 545 Não 0 613 Não 1 712 Não									
2 290 Não 0 311 Não 2 351 Não -2 259 Não 0 632 Não 0 625 Não 3 110 Não 1 607 Não 0 626 Não -1 754 Não 0 673 Não 0 670 Não 0 731 Não 0 526 Não 2 132 Não 0 291 Não -8 129 Não -1 347 Não 0 587 Não -8 129 Não -1 347 Não 0 587 Não -8 129 Não -1 347 Não 0 587 Não -8 129 Não -1 347 Não 0 587 Não 0 613 Não 0 29 Não	Ramna	Extensão	Faiva	Ramna	Evtonção	Foivo	Rampa	Evtonção	Faiva
-2 259 Não 0 632 Não 0 625 Não 3 110 Não 1 607 Não 0 626 Não 0 626 Não 0 673 Não 0 626 Não 0 673 Não 0 670 Não 0 673 Não 0 670 Não 0 731 Não 0 526 Não 2 132 Não 0 291 Não -8 129 Não -1 347 Não 0 587 Não 1 474 Não 0 29 Não 1 546 Não -2 211 Não 0 546 Não 0 613 Não 1 712 Não 1 545 Não 0 613 Não 1 712 Não 1 545 Não 0 784 Não 0 799 Não 1 553 Não 1 411 Não 0 799 Não 1 553 Não 1 411 Não 0 793 Não 1 553 Não 1 411 Não 0 793 Não 1 744 Não 0 793 Não 1 744 Não 0 793 Não 1 744 Não 1 704 Não 1 705 Não 1 706 Não 1 707 Não 1 701 Não 0 701 Não 1 701 Não 0 7									
1	(%)	(m)	Adicional?	(%)	(m)	Adicional?	(%)	(m)	Adicional?
3 110 Não 1 607 Não 0 626 Não -1 754 Não 0 673 Não 0 670 Não 0 731 Não 0 526 Não 2 132 Não 0 291 Não -8 129 Não -1 347 Não 0 291 Não -8 129 Não -1 347 Não 0 587 Não 1 474 Não 0 29 Não 0 546 Não -2 211 Não 0 516 Não 1 545 Não 0 613 Não 0 712 Não -1 238 Não 0 784 Não 0 709 Não 1 553 Não 0 718 Não 0 709 Não <	2	(m)	Adicional? Não	(%)	(m)	Adicional? Não	(%)	(m)	Adicional? Não
-1 754 Não 0 673 Não 0 670 Não 0 731 Não 0 526 Não 2 132 Não 0 291 Não -8 129 Não -1 347 Não 0 587 Não 1 474 Não 0 29 Não 0 546 Não -2 211 Não 0 516 Não 1 545 Não 0 613 Não 1 712 Não -1 238 Não 1 411 Não 0 709 Não 1 553 Não 1 411 Não 0 709 Não 1 553 Não 1 411 Não 0 709 Não 1 553 Não 1 411 Não 0 709 Não 1 709 Não 1 744 Não 0 708 Não 1 744 Não 0 708 Não 1 744 Não 1 744 Não 0 708 Não 1 744 Não 1 744 Não 0 758 Não 1 758 Não	2	(m) 290	Adicional? Não	(%) 0	(m) 311	Adicional? Não	(%) 2	(m) 351	Adicional? Não
0 731 Não 0 526 Não 2 132 Não 0 291 Não -8 129 Não -1 347 Não 0 587 Não 1 474 Não 0 29 Não 0 546 Não -2 211 Não 0 516 Não 1 545 Não 0 613 Não 1 712 Não -1 238 Não 0 784 Não 0 709 Não 1 553 Não 1 411 Não 0 709 Não -4 23 Não 1 411 Não 0 708 Não 1 744 Não 1 300 Não 7 104 Não -1 459 Não 0 623 Não -1 202 Não <t< td=""><td>2 -2</td><td>(m) 290 259</td><td>Adicional? Não Não</td><td>0 0</td><td>(m) 311 632</td><td>Adicional? Não Não</td><td>2 0</td><td>(m) 351 625</td><td>Adicional? Não Não</td></t<>	2 -2	(m) 290 259	Adicional? Não Não	0 0	(m) 311 632	Adicional? Não Não	2 0	(m) 351 625	Adicional? Não Não
0 291 Não -8 129 Não -1 347 Não 0 587 Não 1 474 Não 0 29 Não 0 546 Não -2 211 Não 0 516 Não 1 545 Não 0 613 Não 1 712 Não -1 238 Não 0 784 Não 0 709 Não -1 238 Não 0 784 Não 0 709 Não -1 238 Não 1 411 Não 0 709 Não -1 238 Não 0 784 Não 0 709 Não -1 238 Não 0 718 Não 0 708 Não -1 459 Não 1 300 Não 7 104 Não	2 -2 3	(m) 290 259 110	Adicional? Não Não Não	0 0 0 1	(m) 311 632 607	Adicional? Não Não Não	2 0 0	(m) 351 625 626	Adicional? Não Não Não
0 587 Não 1 474 Não 0 29 Não 0 546 Não -2 211 Não 0 516 Não 1 545 Não 0 613 Não 1 712 Não -1 238 Não 0 784 Não 0 709 Não 1 553 Não 1 411 Não 0 709 Não -4 23 Não 0 718 Não 0 793 Não -4 23 Não 0 718 Não 0 708 Não 1 744 Não 1 300 Não 7 104 Não -1 459 Não 0 623 Não -1 202 Não 1 701 Não 1 183 Não 7 182 Não	2 -2 3 -1	(m) 290 259 110 754	Adicional? Não Não Não Não Não	0 0 0 1 0	(m) 311 632 607 673	Adicional? Não Não Não Não	(%) 2 0 0 0	(m) 351 625 626 670	Adicional? Não Não Não Não Não
0 546 Não -2 211 Não 0 516 Não 1 545 Não 0 613 Não 1 712 Não -1 238 Não 0 784 Não 0 709 Não 1 553 Não 1 411 Não 0 793 Não -4 23 Não 0 718 Não 0 798 Não -4 23 Não 0 718 Não 0 708 Não -4 23 Não 0 718 Não 0 708 Não 1 744 Não 1 300 Não 7 104 Não -1 459 Não 0 623 Não -1 202 Não 1 701 Não 1 183 Não -1 202 Não <t< td=""><td>2 -2 3 -1 0</td><td>(m) 290 259 110 754 731</td><td>Adicional? Não Não Não Não Não Não</td><td>0 0 1 0 0</td><td>(m) 311 632 607 673 526</td><td>Adicional? Não Não Não Não Não Não Não</td><td>(%) 2 0 0 0 2</td><td>(m) 351 625 626 670 132</td><td>Adicional? Não Não Não Não Não Não</td></t<>	2 -2 3 -1 0	(m) 290 259 110 754 731	Adicional? Não Não Não Não Não Não	0 0 1 0 0	(m) 311 632 607 673 526	Adicional? Não Não Não Não Não Não Não	(%) 2 0 0 0 2	(m) 351 625 626 670 132	Adicional? Não Não Não Não Não Não
0 546 Não -2 211 Não 0 516 Não 1 545 Não 0 613 Não 1 712 Não -1 238 Não 0 784 Não 0 709 Não 1 553 Não 1 411 Não 0 793 Não -4 23 Não 0 718 Não 0 708 Não 1 744 Não 1 300 Não 7 104 Não -1 459 Não 1 300 Não 7 104 Não -1 459 Não 0 623 Não -1 202 Não -1 459 Não 0 623 Não -1 202 Não -1 459 Não 0 623 Não -7 182 Não -1 701 Não 1 183 Não -7 182 Não	2 -2 3 -1 0	(m) 290 259 110 754 731 291	Adicional? Não Não Não Não Não Não Não Não	0 0 1 0 0 -8	(m) 311 632 607 673 526 129	Adicional? Não Não Não Não Não Não Não Não	(%) 2 0 0 0 2 -1	(m) 351 625 626 670 132 347	Adicional? Não Não Não Não Não Não Não
1 545 Não 0 613 Não 1 712 Não -1 238 Não 0 784 Não 0 709 Não 1 553 Não 1 411 Não 0 793 Não -4 23 Não 0 718 Não 0 708 Não 1 744 Não 1 300 Não 7 104 Não -1 459 Não 1 300 Não 7 104 Não -1 459 Não 0 623 Não -1 202 Não -1 459 Não 0 623 Não -1 202 Não 1 701 Não 0 623 Não -1 202 Não -1 647 Não 0 623 Não -7 182 Não -1 647 Não -3 171 Não -1 214 Não <td>-2 3 -1 0 0</td> <td>(m) 290 259 110 754 731 291 587</td> <td>Adicional? Não Não Não Não Não Não Não Não Não</td> <td>0 0 1 0 0 -8 1</td> <td>(m) 311 632 607 673 526 129 474</td> <td>Adicional? Não Não Não Não Não Não Não Não Não</td> <td>2 0 0 0 2 -1 0</td> <td>(m) 351 625 626 670 132 347 29</td> <td>Adicional? Não Não Não Não Não Não Não Não</td>	-2 3 -1 0 0	(m) 290 259 110 754 731 291 587	Adicional? Não Não Não Não Não Não Não Não Não	0 0 1 0 0 -8 1	(m) 311 632 607 673 526 129 474	Adicional? Não Não Não Não Não Não Não Não Não	2 0 0 0 2 -1 0	(m) 351 625 626 670 132 347 29	Adicional? Não Não Não Não Não Não Não Não
-1 238 Não 0 784 Não 0 709 Não 1 553 Não 1 411 Não 0 793 Não 1 411 Não 0 793 Não 1 744 Não 1 300 Não 7 104 Não 1 459 Não 1 183 Não 7 182 Não 1 701 Não 1 183 Não 7 182 Não 1 647 Não 0 714 Não 0 714 Não 0 379 Não 0 714 Não 0 494 Não 0 379 Não 0 714 Não 0 494 Não 0 683 Não 0 0 708 Não 0 7	-2 3 -1 0 0	(m) 290 259 110 754 731 291 587	Adicional? Não Não Não Não Não Não Não Não Não Nã	0 0 1 0 0 -8 1	(m) 311 632 607 673 526 129 474	Adicional? Não Não Não Não Não Não Não Não Não Nã	2 0 0 0 2 -1 0	(m) 351 625 626 670 132 347 29	Adicional? Não Não Não Não Não Não Não Não Não Nã
1 553 Não 1 411 Não 0 793 Não -4 23 Não 0 718 Não 0 708 Não 1 744 Não 1 300 Não 7 104 Não -1 459 Não 0 623 Não -1 202 Não 1 701 Não 0 623 Não -1 202 Não -1 647 Não 1 183 Não -1 202 Não -1 647 Não 1 183 Não -1 214 Não -1 647 Não -3 171 Não -1 214 Não -3 135 Não 0 714 Não 0 494 Não -3 135 Não -2 276 Não -2 269 Não 0 0 Não 0 231 Não 0 683 Não <td>-(%) 2 -2 3 -1 0 0 0</td> <td>(m) 290 259 110 754 731 291 587 546</td> <td>Adicional? Não Não Não Não Não Não Não Não Não Nã</td> <td>0 0 1 0 0 -8 1 -2</td> <td>(m) 311 632 607 673 526 129 474 211</td> <td>Adicional? Não Não Não Não Não Não Não Não Não Nã</td> <td>(%) 2 0 0 0 2 -1 0</td> <td>(m) 351 625 626 670 132 347 29 516</td> <td>Adicional? Não Não Não Não Não Não Não Não Não Nã</td>	-(%) 2 -2 3 -1 0 0 0	(m) 290 259 110 754 731 291 587 546	Adicional? Não Não Não Não Não Não Não Não Não Nã	0 0 1 0 0 -8 1 -2	(m) 311 632 607 673 526 129 474 211	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0	(m) 351 625 626 670 132 347 29 516	Adicional? Não Não Não Não Não Não Não Não Não Nã
-4 23 Não 0 718 Não 0 708 Não 1 744 Não 1 300 Não 7 104 Não 1 300 Não 7 104 Não 1 459 Não 0 623 Não 7 1202 Não 1 701 Não 1 183 Não 7 182 Não 7 182 Não 1 183 Não 1 1 183 Não 1 1 183 Não 1 1 184 Não 0 1 1 185 Não 0 1 1 185 Não 1 1 185 Não 1 1 305 Não 1 1 305 Não 1 1 185 Não 1 1 305 Não 1 1 316 Não 1 1 185 Não 1 1 305 Não 1 1 316 Não 1	2 -2 3 -1 0 0 0 0	(m) 290 259 110 754 731 291 587 546 545	Adicional? Não Não Não Não Não Não Não Não Não Nã	0 0 1 0 0 -8 1 -2 0	(m) 311 632 607 673 526 129 474 211 613	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1	(m) 351 625 626 670 132 347 29 516 712	Adicional? Não Não Não Não Não Não Não Não Não Nã
1 744 Não 1 300 Não 7 104 Não 1 459 Não 0 623 Não -1 202 Não 1 701 Não 1 183 Não 7 182 Não -1 647 Não 0 714 Não 0 494 Não 0 379 Não 0 714 Não 0 494 Não 0 0 714 Não 0 0 494 Não 0 0 0 Não 0 231 Não 0 683 Não 0 290 Não 0 79 Não 0 433 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 N	2 -2 3 -1 0 0 0 0 1 -1	(m) 290 259 110 754 731 291 587 546 545 238	Adicional? Não Não Não Não Não Não Não Não Não Nã	0 0 1 0 0 -8 1 -2 0	(m) 311 632 607 673 526 129 474 211 613 784	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1	(m) 351 625 626 670 132 347 29 516 712 709	Adicional? Não Não Não Não Não Não Não Não Não Nã
1 744 Não 1 300 Não 1 202 Não 1 701 Não 1 183 Não 7 182 Não 1 183 Não 7 182 Não 1 183 Não 7 182 Não 1 183 Não 1 1 214 Não 1 214 Não 0 379 Não 0 714 Não 0 494 Não 1 379 Não 1 379 Não 1 276 Não 1 2269 Não 0 0 Não 0 231 Não 0 683 Não 0 290 Não 0 79 Não 0 433 Não 0 777 Não 1 70 Não 1 311 Não 1 329 Não 1 329 Não 1 331 N	2 -2 3 -1 0 0 0 0 1 -1 1	(m) 290 259 110 754 731 291 587 546 545 238 553	Adicional? Não Não Não Não Não Não Não Não Não Nã	0 0 1 0 0 -8 1 -2 0 0	(m) 311 632 607 673 526 129 474 211 613 784 411	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0	(m) 351 625 626 670 132 347 29 516 712 709 793	Adicional? Não Não Não Não Não Não Não Não Não Nã
-1 439 Não Não 1 183 Não 7 182 Não 1 647 Não -3 171 Não 0 494 Não 0 379 Não 0 714 Não 0 494 Não 0 494 Não 0 0 135 Não 0 221 Não 0 231 Não 0 683 Não 0 683 Não 0 290 Não 0 79 Não 0 433 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 1 70 Não 1 311 Não 0 777 Não 0 495 Não 0 495 Não 0 298 Não 0 495 Não 1 305 Não 0 777 Não Não 0 495 Não 1 305 Não 0 777 Não Não 0 495 Não Não 0 495 Não 0 777 Não Não 0 495 Não Não 0 777 Não Não Não Não 0 77 Não Não Não 0 77 Não Não Não Não 0 77 Não	2 -2 3 -1 0 0 0 0 1 -1 1 -4	(m) 290 259 110 754 731 291 587 546 545 238 553 23	Adicional? Não Não Não Não Não Não Não Não Não Nã	0 0 1 0 0 -8 1 -2 0 0 1	(m) 311 632 607 673 526 129 474 211 613 784 411 718	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0	(m) 351 625 626 670 132 347 29 516 712 709 793 708	Adicional? Não Não Não Não Não Não Não Não Não Nã
1 701 Não 1 183 Não 7 182 Não 10 647 Não 0 379 Não 0 714 Não 0 494 Não 0 494 Não 0 135 Não 0 714 Não 0 494 Não 0 0 135 Não 0 136 Não 0 136 Não 0 136 Não 0 137 Não 0 137 Não 0 138 Não 0 1	2 -2 3 -1 0 0 0 0 1 -1 1 -4 1	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 0 0 1 0 0 -8 1 -2 0 0 1 0	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104	Adicional? Não Não Não Não Não Não Não Não Não Nã
-1 647 Não -3 171 Não -1 214 Não 0 379 Não 0 714 Não 0 494 Não -3 135 Não -2 276 Não -2 269 Não 0 0 Não 0 231 Não 0 683 Não 0 290 Não 0 79 Não 0 433 Não 0 777 Não 1 70 Não 1 311 Não -1 643 Não -6 116 Não -2 322 Não 0 298 Não 0 495 Não 1 305 Não 1 305 Não 1 185 Não -7 184 Não -2 263 Não Não 1 201 185 Não -2 263 Não Não 1 201 185 Não -2 263 Não Não Não -7 184 Não -2 263 Não Não Não Não -7 184 Não -2 263 Não Não Não -7 184 Não -2 263 Não Não Não Não -7 184 Não -2 263 Não	(%) 2 -2 3 -1 0 0 0 1 -1 1 -4 1 -1	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 0 0 1 0 0 -8 1 -2 0 0 1 0	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202	Adicional? Não Não Não Não Não Não Não Não Não Nã
0 379 Não 0 714 Não 0 494 Não -3 135 Não -2 276 Não -2 269 Não 0 0 Não 0 231 Não 0 683 Não 0 290 Não 0 79 Não 0 433 Não 0 777 Não 1 70 Não 1 311 Não -1 643 Não -6 116 Não -2 322 Não 0 298 Não 0 495 Não 1 305 Não 1 185 Não -7 184 Não -2 263 Não Não 1 185 Não -2 263 Não Não 1 185 Não -2 263 Não Não Não -7 184 Não -2 263 Não Não Não -7 184 Não -2 263 Não Não Não -7 184 Não -2 263 Não Não Não Não -7 184 Não -2 263 Não Não Não Não -7 184 Não -2 263 Não	(%) 2 -2 3 -1 0 0 0 1 -1 1 -4 1 -1	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 0 0 1 0 0 -8 1 -2 0 0 1 0	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202	Adicional? Não Não Não Não Não Não Não Não Não Nã
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 -2 3 -1 0 0 0 0 1 -1 1 -4 1 -1 1	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459 701	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 0 0 1 0 0 -8 1 -2 0 0 1 0 1	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623 183	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1 7	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202 182	Adicional? Não Não Não Não Não Não Não Não Não Nã
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-(%) 2 -2 3 -1 0 0 0 1 -1 1 -4 1 -1 1 -1	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459 701 647	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 0 0 1 0 0 -8 1 -2 0 0 1 0 1 0 1	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623 183 171	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1 7 -1	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202 182 214	Adicional? Não Não Não Não Não Não Não Não Não Nã
0 290 Não 0 79 Não 0 433 Não 0 777 Não 1 70 Não 1 311 Não -1 643 Não -6 116 Não -2 322 Não 0 298 Não 1 305 Não -7 184 Não -2 263 Não 1 185 Não Não	-(%) 2 -2 3 -1 0 0 0 1 -1 1 -4 1 -1 0	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459 701 647 379	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 0 0 1 0 0 -8 1 -2 0 0 1 0 1 0 1 0	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623 183 171 714	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1 7 -1 0	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202 182 214 494	Adicional? Não Não Não Não Não Não Não Não Não Nã
0 777 Não 1 70 Não 1 311 Não 1 643 Não 1 66 116 Não 1 322 Não 1 70 Não 1 311 Não 1 70 Não 1 7	-(%) 2 -2 3 -1 0 0 0 1 -1 1 -4 1 -1 0 -3	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459 701 647 379 135	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 0 0 1 0 0 -8 1 -2 0 0 1 0 1 0 1 0 -3 0 -3	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623 183 171 714 276	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1 7 -1 0 -2	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202 182 214 494 269	Adicional? Não Não Não Não Não Não Não Não Não Nã
-1 643 Não Hão Hão Hão Hão Hão Hão Hão Hão Hão H	2 -2 3 -1 0 0 0 0 0 1 -1 1 -4 1 -1 0 0 0 0 0	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459 701 647 379 135 0	Adicional? Não Não Não Não Não Não Não Não Não Nã	0 0 0 1 0 0 -8 1 -2 0 0 1 0 1 0 1 -3 0 -2 0	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623 183 171 714 276 231	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1 7 -1 0 -2 0	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202 182 214 494 269 683	Adicional? Não Não Não Não Não Não Não Não Não Nã
0 298 Não 0 495 Não 1 305 Não 1 185 Não 1 185 Não 1 263 Não 1 263 Não 1 263 Não 1 264	2 -2 3 -1 0 0 0 0 0 1 -1 1 -4 1 -1 0 0 -3 0	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459 701 647 379 135 0 290	Adicional? Não Não Não Não Não Não Não Não Não Nã	0 0 0 1 0 0 -8 1 -2 0 0 1 0 1 0 1 -3 0 -2 0	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623 183 171 714 276 231 79	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1 7 -1 0 -2 0 0	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202 182 214 494 269 683 433	Adicional? Não Não Não Não Não Não Não Não Não Nã
0 298 Nao 0 495 Nao 1 305 Nao 1 185 Nao 1 185 Nao	2 -2 3 -1 0 0 0 0 0 1 -1 1 -4 1 -1 0 0 -3 0	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459 701 647 379 135 0 290	Adicional? Não Não Não Não Não Não Não Não Não Nã	0 0 0 1 0 0 -8 1 -2 0 0 1 0 1 0 1 -3 0 -2 0	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623 183 171 714 276 231 79	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1 7 -1 0 -2 0 0	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202 182 214 494 269 683 433	Adicional? Não Não Não Não Não Não Não Não Não Nã
-7 184 Não -2 263 Não 1 185 Não	2 -2 3 -1 0 0 0 0 0 1 -1 1 -4 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459 701 647 379 135 0 290 777	Adicional? Não Não Não Não Não Não Não Não Não Nã	0 0 0 1 0 0 -8 1 -2 0 0 1 0 1 0 1 -3 0 -2 0 1	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623 183 171 714 276 231 79 70	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1 7 -1 0 -2 0 0 1	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202 182 214 494 269 683 433 311	Adicional? Não Não Não Não Não Não Não Não Não Nã
1 185 Não	2 -2 3 -1 0 0 0 0 0 1 -1 1 -4 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459 701 647 379 135 0 290 777 643	Adicional? Não Não Não Não Não Não Não Não Não Nã	0 0 0 1 0 0 -8 1 -2 0 0 1 0 1 0 1 -3 0 -2 0 0 1 -3	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623 183 171 714 276 231 79 70 116	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1 7 -1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202 182 214 494 269 683 433 311 322	Adicional? Não Não Não Não Não Não Não Não Não Nã
1 204	2 -2 3 -1 0 0 0 0 0 1 -1 1 -4 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459 701 647 379 135 0 290 777 643	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 0 0 1 0 0 -8 1 -2 0 0 1 0 1 -3 0 -2 0 0 1 -6 0	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623 183 171 714 276 231 79 70 116 495	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1 7 -1 0 -2 0 0 1 -2 1	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202 182 214 494 269 683 433 311 322 305	Adicional? Não Não Não Não Não Não Não Não Não Nã
-1 284 Não	2 -2 3 -1 0 0 0 0 0 1 -1 1 -4 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459 701 647 379 135 0 290 777 643	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 0 0 1 0 0 -8 1 -2 0 0 1 0 1 -3 0 -2 0 0 1 -6 0 -7	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623 183 171 714 276 231 79 70 116 495 184	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1 7 -1 0 -2 0 0 1 -2 1	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202 182 214 494 269 683 433 311 322 305	Adicional? Não Não Não Não Não Não Não Não Não Nã
	2 -2 3 -1 0 0 0 0 0 1 -1 1 -4 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m) 290 259 110 754 731 291 587 546 545 238 553 23 744 459 701 647 379 135 0 290 777 643	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 0 0 1 0 0 -8 1 -2 0 0 1 0 1 -3 0 -2 0 0 1 -6 0 -7 1	(m) 311 632 607 673 526 129 474 211 613 784 411 718 300 623 183 171 714 276 231 79 70 116 495 184 185	Adicional? Não Não Não Não Não Não Não Não Não Nã	(%) 2 0 0 0 2 -1 0 0 1 0 0 7 -1 7 -1 0 -2 0 0 1 -2 1	(m) 351 625 626 670 132 347 29 516 712 709 793 708 104 202 182 214 494 269 683 433 311 322 305	Adicional? Não Não Não Não Não Não Não Não Não Nã

(cont.) Tabela B.6: Subtrechos hipotéticos indicados para implantação de faixa adicional para um trecho hipotético com COG = 1

COG 1 - VIII

	COG 1 - V	II	COG 1 - VIII				
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa		
(%)	(m)	Adicional?	(%)	(m)	Adicional?		
1	270	Não	0	418	Não		
0	322	Não	-3	192	Não		
7	112	Não	0	114	Não		
-3	87	Não	0	763	Não		
		Não			Não		
0	696	Não	1	409	Não		
-1	659	Não	-2	391	Não		
2	278	Não	0	360	Não		
-1	214	Não	-8	40	Não		
0	478	Não	0	722	Não		
-1	385	Não	0	723	Não		
0	598	Não	1	107	Não		
	253	Não	-8	163	Não		
-1		Não			Não		
2	326	Não	1	615	Não		
-2	366	Não	0	679	Não		
0	335	Não	1	645	Não		
-1	215	Não	-1	472	Não		
1	671	Não	2	337	Não		
0	777	Não	0	396	Não		
1	476	Não	1	743	Não		
		Não			Não		
0	446	Não	-1	452	Não		
3	144	Não	1	634	Não		
-1	632	Não	-1	336	Não		
1	515	Não	4	46	Não		
	7.45	INAO			INAO		
-1	745	Não	-1	243	Não		
-1		Não X	-1		Não X		
	COG 1 - I	X		COG 1 - 2	X		
Rampa	COG 1 - I Extensão	X Faixa	Rampa	COG 1 - 2 Extensão	Y Faixa		
Rampa (%)	COG 1 - I Extensão (m)	X Faixa Adicional?	Rampa (%)	COG 1 - 2 Extensão (m)	Y Faixa Adicional?		
Rampa (%)	COG 1 - I Extensão (m) 235	X Faixa Adicional? Não	Rampa (%)	COG 1 - 2 Extensão (m) 333	Faixa Adicional? Não		
Rampa (%) 0 -1	COG 1 - I Extensão (m) 235 439	X Faixa Adicional? Não Não	Rampa (%) 0 -1	COG 1 - 2 Extensão (m) 333 518	Faixa Adicional? Não Não		
Rampa (%) 0 -1	COG 1 - I Extensão (m) 235 439 539	X Faixa Adicional? Não Não Não	Rampa (%) 0 -1 1	COG 1 - 2 Extensão (m) 333 518 523	Faixa Adicional? Não Não Não		
Rampa (%) 0 -1 1 0	COG 1 - I Extensão (m) 235 439 539 422	X Faixa Adicional? Não Não Não Não Não	Rampa (%) 0 -1 1 0	COG 1 - 2 Extensão (m) 333 518 523 372	Faixa Adicional? Não Não Não Não Não		
Rampa (%) 0 -1 1 0 1	COG 1 - I Extensão (m) 235 439 539 422 776	X Faixa Adicional? Não Não Não Não Não Não Não	Rampa (%) 0 -1 1 0 4	COG 1 - 2 Extensão (m) 333 518 523 372 103	Faixa Adicional? Não Não Não Não Não Não Não		
Rampa (%) 0 -1 1 0	COG 1 - I Extensão (m) 235 439 539 422	X Faixa Adicional? Não Não Não Não Não Não Não Não Não	Rampa (%) 0 -1 1 0	COG 1 - 2 Extensão (m) 333 518 523 372	Faixa Adicional? Não Não Não Não Não Não Não Não Não		
Rampa (%) 0 -1 1 0 1	COG 1 - I Extensão (m) 235 439 539 422 776	X Faixa Adicional? Não	Rampa (%) 0 -1 1 0 4	COG 1 - 2 Extensão (m) 333 518 523 372 103	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1	COG 1 - I Extensão (m) 235 439 539 422 776 561 319	Faixa Adicional? Não	Rampa (%) 0 -1 1 0 4 0	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 0 -7	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 0 -7	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642 599	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 0 -7 0 -1	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642 599 627	Taixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 0 -7 0 -1 0	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0 0 1 -1	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642 599 627 791	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 -7 0 -1 0 0	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616 87	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0 0 1 -1	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642 599 627 791 268	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 -7 0 -1 0 1	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616 87 609	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0 0 1 -1	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642 599 627 791	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 -7 0 -1 0 0	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616 87	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0 0 1 -1	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642 599 627 791 268	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 -7 0 -1 0 1	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616 87 609	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0 0 1 -1 0 0	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642 599 627 791 268 577 707	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 0 -7 0 -1 0 0 1 0	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616 87 609 356 762	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0 1 -1 0 0 0 0 0 0	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642 599 627 791 268 577 707 623	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 -7 0 -1 0 1 0 0 -5	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616 87 609 356 762 199	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0 1 -1 0 0 0 2	COG 1 - II Extensão (m) 235 439 539 422 776 561 319 212 642 599 627 791 268 577 707 623 247	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 -7 0 -1 0 1 0 -7 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616 87 609 356 762 199 751	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0 1 -1 0 0 2 -2	COG 1 - II Extensão (m) 235 439 539 422 776 561 319 212 642 599 627 791 268 577 707 623 247 11	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 0 -7 0 -1 0 0 1 0 -5 1 -1	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616 87 609 356 762 199 751 798	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0 1 -1 0 0 2 -2 1	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642 599 627 791 268 577 707 623 247 11 209	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 0 -7 0 -1 0 0 1 0 0 -5 1 -1 0	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616 87 609 356 762 199 751 798 754	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0 1 -1 0 0 2 -2 1 -5	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642 599 627 791 268 577 707 623 247 11 209 55	X Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 0 -7 0 -1 0 0 1 0 0 -5 1 -1 0 0	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616 87 609 356 762 199 751 798 754 436	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0 1 -1 0 0 2 -2 1 -5 0	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642 599 627 791 268 577 707 623 247 11 209 55 677	X Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 0 -7 0 -1 0 0 1 0 0 -5 1 -1 0 0 3	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616 87 609 356 762 199 751 798 754 436 149	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		
Rampa (%) 0 -1 1 0 1 -1 2 -2 0 0 1 -1 0 0 2 -2 1 -5	COG 1 - I Extensão (m) 235 439 539 422 776 561 319 212 642 599 627 791 268 577 707 623 247 11 209 55	X Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã	Rampa (%) 0 -1 1 0 4 0 0 -7 0 -1 0 0 1 0 0 -5 1 -1 0 0	COG 1 - 2 Extensão (m) 333 518 523 372 103 627 575 39 796 492 616 87 609 356 762 199 751 798 754 436	Faixa Adicional? Não Não Não Não Não Não Não Não Não Nã		

Tabela B.7: Subtrechos hipotéticos indicados para implantação de faixa adicional para um trecho hipotético com COG = 2

	COG 1 -	1	li echo ii	COG 2 - 1	<u>m COG = 2</u> II		COG 2- I	II
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
(%)	(m)	Adicional?	(%)	(m)	Adicional?	(%)	(m)	Adicional?
1	429	Não	0	858	Não	1	1279	Não
-1	1058	Não	0	1397	Não	0	1379	Não
9	95	Não	2	752	Não	5	341	Não
-1	1105	Não	0	861	Não	-1	413	Não
3	551	Sim	0	1074	Não	4	276	Não
-8	93	Não	-2	330	Não	0	1115	Não
4	304	Não	1	698	Não	1	749	Não
-8	67	Não	-1	1256	Não	-3	704	Não
2	228	Não	0	823	Não	1	636	Não
-1	1284	Não	-1	689	Não	-4	311	Não
0	1044	Não	1	923	Não	1	1351	Não
-1	1386	Não	-5	310	Não	-6	354	Não
8	134	Não	9	29	Não	3	384	Não
-2	492	Não				-9	68	Não
0	1123	Não				2	640	Sim
2	607	Sim						
	~~~	· · · ·		0000	T 7		0000 1 1	T
	COG 2 - I			COG 2 -			COG 2- V	
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
(%)	Extensão (m)	Faixa Adicional?	(%)	Extensão (m)	Faixa Adicional?	(%)	Extensão (m)	Faixa Adicional?
<u>(%)</u> 1	Extensão (m) 721	Faixa Adicional? Não	(%) 1	Extensão (m) 649	Faixa Adicional? Não	(%) 0	Extensão (m) 1298	Faixa Adicional? Não
1 0	Extensão (m) 721 819	Faixa Adicional? Não Não	(%) 1 -3	Extensão (m) 649 712	Faixa Adicional? Não Não	(%) 0 -4	Extensão (m) 1298 206	Faixa Adicional? Não Não
1 0 3	Extensão (m) 721 819 383	Faixa Adicional? Não Não Não	(%) 1 -3 2	Extensão (m) 649 712 506	Faixa Adicional? Não Não Sim	(%) 0 -4 2	Extensão (m) 1298 206 227	Faixa Adicional? Não Não Não
(%) 1 0 3 -3	Extensão (m) 721 819 383 757	Faixa Adicional?  Não Não Não Não Não	(%) 1 -3 2 0	Extensão (m) 649 712 506 992	Faixa Adicional?  Não Não Sim Não	(%) 0 -4 2 -2	Extensão (m) 1298 206 227 418	Faixa Adicional?  Não Não Não Não Não
(%) 1 0 3 -3 9	Extensão (m) 721 819 383 757 146	Faixa Adicional?  Não Não Não Não Não Não	(%) 1 -3 2 0 2	Extensão (m) 649 712 506 992 440	Faixa Adicional?  Não Não Sim Não Não Não	(%) 0 -4 2 -2 1	Extensão (m) 1298 206 227 418 1105	Faixa Adicional?  Não Não Não Não Não Não
(%) 1 0 3 -3 9 -9	Extensão (m) 721 819 383 757 146 21	Faixa Adicional?  Não Não Não Não Não Não Não Não	(%) 1 -3 2 0 2 0	Extensão (m) 649 712 506 992 440 851	Faixa Adicional?  Não Não Sim Não Não Não Não	(%) 0 -4 2 -2 1 -1	Extensão (m) 1298 206 227 418 1105 1117	Faixa Adicional?  Não Não Não Não Não Não Não Não
(%) 1 0 3 -3 9 -9 1	Extensão (m) 721 819 383 757 146 21 819	Faixa Adicional?  Não Não Não Não Não Não Não Não Não	(%) 1 -3 2 0 2 0 9	Extensão (m) 649 712 506 992 440 851 170	Faixa Adicional?  Não Não Sim Não Não Não Não Não	(%) 0 -4 2 -2 1 -1 1	Extensão (m) 1298 206 227 418 1105 1117 754	Faixa Adicional?  Não Não Não Não Não Não Não Não Não
(%) 1 0 3 -3 9 -9 1 -5	Extensão (m) 721 819 383 757 146 21 819 363	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã	(%) 1 -3 2 0 2 0 9 -9	Extensão (m) 649 712 506 992 440 851 170 167	Faixa Adicional?  Não Não Sim Não Não Não Não Não Não Não	(%) 0 -4 2 -2 1 -1 1 -4	Extensão (m) 1298 206 227 418 1105 1117 754 302	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã
(%)  1 0 3 -3 9 -9 1 -5 2	Extensão (m) 721 819 383 757 146 21 819 363 798	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã	(%) 1 -3 2 0 2 0 9 -9 2	Extensão (m) 649 712 506 992 440 851 170 167 668	Faixa Adicional?  Não Não Sim Não Não Não Não Não Não Não Sim	(%) 0 -4 2 -2 1 -1 1 -4 9	Extensão (m) 1298 206 227 418 1105 1117 754 302 162	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã
(%)  1 0 3 -3 9 -9 1 -5 2 -3	Extensão (m) 721 819 383 757 146 21 819 363 798 679	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Sim Não	(%) 1 -3 2 0 2 0 9 -9 2 -8	Extensão (m) 649 712 506 992 440 851 170 167 668 184	Faixa Adicional?  Não Não Sim Não Não Não Não Não Não Sim Não Não Não	(%) 0 -4 2 -2 1 -1 1 -4 9 -1	Extensão (m) 1298 206 227 418 1105 1117 754 302 162 519	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã
(%)  1 0 3 -3 9 -9 1 -5 2 -3 5	Extensão (m) 721 819 383 757 146 21 819 363 798 679 259	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã	(%)  1 -3 2 0 2 0 9 -9 2 -8 4	Extensão (m) 649 712 506 992 440 851 170 167 668 184 341	Faixa Adicional?  Não Não Sim Não Não Não Não Não Não Não Não Sim Não Não	(%) 0 -4 2 -2 1 -1 1 -4 9 -1 1	Extensão (m) 1298 206 227 418 1105 1117 754 302 162 519 1362	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã
(%)  1 0 3 -3 9 -9 1 -5 2 -3 5 -2	Extensão (m) 721 819 383 757 146 21 819 363 798 679 259 778	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã	(%)  1 -3 2 0 2 0 9 -9 2 -8 4 -1	Extensão (m) 649 712 506 992 440 851 170 167 668 184 341 1336	Faixa Adicional?  Não Não Sim Não Não Não Não Não Não Não Não Sim Não Não Não	(%) 0 -4 2 -2 1 -1 1 -4 9 -1 1 -6	Extensão (m) 1298 206 227 418 1105 1117 754 302 162 519 1362 341	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã
(%)  1 0 3 -3 9 -9 1 -5 2 -3 5 -2 1	Extensão (m) 721 819 383 757 146 21 819 363 798 679 259 778 852	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã	(%)  1 -3 2 0 2 0 9 -9 2 -8 4 -1 1	Extensão (m) 649 712 506 992 440 851 170 167 668 184 341 1336 997	Faixa Adicional?  Não Não Sim Não Não Não Não Não Não Não Não Sim Não Não Não Não	(%) 0 -4 2 -2 1 -1 1 -4 9 -1 1 -6 0	Extensão (m)  1298 206 227 418 1105 1117 754 302 162 519 1362 341 1231	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã
(%)  1 0 3 -3 9 -9 1 -5 2 -3 5 -2 1 -1	Extensão (m) 721 819 383 757 146 21 819 363 798 679 259 778 852 718	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã	(%)  1 -3 2 0 2 0 9 -9 2 -8 4 -1 1 -1	Extensão (m) 649 712 506 992 440 851 170 167 668 184 341 1336 997 996	Faixa Adicional?  Não Não Sim Não Não Não Não Não Não Não Sim Não Não Não Não Não Não	(%)  0  -4  2  -2  1  -1  1  -4  9  -1  1  -6  0  -1	Extensão (m) 1298 206 227 418 1105 1117 754 302 162 519 1362 341 1231 496	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã
(%)  1 0 3 -3 9 -9 1 -5 2 -3 5 -2 1 -1 0	Extensão (m)  721  819  383  757  146  21  819  363  798  679  259  778  852  718  1356	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã	(%)  1 -3 2 0 2 0 9 -9 2 -8 4 -1 1 -1 1	Extensão (m) 649 712 506 992 440 851 170 167 668 184 341 1336 997 996 800	Faixa Adicional?  Não Não Sim Não Não Não Não Não Não Sim Não Não Não Não Não Não Não Não	(%) 0 -4 2 -2 1 -1 1 -4 9 -1 1 -6 0 -1 9	Extensão (m)  1298 206 227 418 1105 1117 754 302 162 519 1362 341 1231 496 197	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã
(%)  1 0 3 -3 9 -9 1 -5 2 -3 5 -2 1 -1	Extensão (m) 721 819 383 757 146 21 819 363 798 679 259 778 852 718	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã	(%)  1 -3 2 0 2 0 9 -9 2 -8 4 -1 1 -1	Extensão (m) 649 712 506 992 440 851 170 167 668 184 341 1336 997 996	Faixa Adicional?  Não Não Sim Não Não Não Não Não Não Não Sim Não Não Não Não Não Não	(%)  0  -4  2  -2  1  -1  1  -4  9  -1  1  -6  0  -1	Extensão (m) 1298 206 227 418 1105 1117 754 302 162 519 1362 341 1231 496	Faixa Adicional?  Não Não Não Não Não Não Não Não Não Nã



(cont.) Tabela B.7: Subtrechos hipotéticos indicados para implantação de faixa adicional para um trecho hipotético com COG = 2

	COG 2 - V	'II		COG 2- V	Ш
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
(%)	( <b>m</b> )	Adicional?	(%)	( <b>m</b> )	Adicional?
1	568	Não	8	20	Não
-3	456	Não	0	1133	Não
1	750	Não	1	1135	Não
0	1393	Não	-2	450	Não
1	644	Não	0	1268	Não
0	854	Não	-9	83	Não
0	1197	Não	1	1190	Não
-1	818	Não	-1	1070	Não
8	43	Não	8	185	Não
0	1119	Não	-1	642	Não
1	1089	Não	1	1180	Não
-6	395	Não	-2	602	Não
2	431	Não	1	1042	Não
-6	243	Não			

COG 2 - IX			COG 2 - X		
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
(%)	( <b>m</b> )	Adicional?	(%)	( <b>m</b> )	Adicional?
0	1385	Não	1	984	Não
-1	1344	Não	0	862	Não
1	1280	Não	1	876	Não
-8	17	Não	-1	1210	Não
3	308	Não	2	723	Sim
-1	1012	Não	-3	755	Não
8	44	Não	1	916	Não
-2	711	Não	-3	304	Não
0	1377	Não	1	936	Não
-8	72	Não	-4	289	Não
1	662	Não	5	366	Não
-3	539	Não	-3	574	Não
1	1249	Não	2	293	Não
			-8	44	Não
			0	849	Não
			-9	19	Não



Tabela B.8: Subtrechos hipotéticos indicados para implantação de faixa adicional para um trecho hipotético com COG = 3

	COG 3 -	1	LICCIIO II	<b>COG 3 -</b> 1	m COG = 3 II		COG 3- I	II
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
(%)	(m)	Adicional?	(%)	(m)	Adicional?	(%)	( <b>m</b> )	Adicional?
2	1295	Sim	1	1119	Não	1	997	Não
-6	223	Não	-2	1305	Não	-7	242	Não
2	1015	Sim	1	1030	Não	3	766	Sim
-1	1195	Não	-3	1041	Não	-3	822	Não
7	324	Não	1	1248	Não	2	601	Sim
-6	339	Não	-3	459	Não	-1	2028	Não
1	933	Não	1	1082	Não	2	1124	Sim
-2	1311	Não	-3	1062	Não	-1	1356	Não
2	787	Sim	2	1249	Sim	3	449	Sim
-6	400	Não	-4	405	Não	-6	241	Não
5	343	Não				1	1374	Não
-1	1529	Não						
6	306	Não						
	COG 3 - I	V	COG 3 - V				COG 3- V	7I
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
(%)	( <b>m</b> )	Adicional?	(%)	( <b>m</b> )	Adicional?	(%)	( <b>m</b> )	Adicional?
2	708	Sim	2	708	Sim	1	1266	Não
-7	299	Não	-7	299	Não	-1	1154	Não
2	771	Sim	2	771	Sim	3	800	Sim
-7	395	Não	-7	395	Não	-7	332	Não
0	2392	Não	0	2392	Não	0	1514	Não
-2	1326	Não	-2	1326	Não	-1	1397	Não
1	1203	Não	1	1203	Não	1	864	Não
-1	1242	Não	-1	1242	Não	-7	352	Não
1	1244	Não	1	1244	Não	1	1504	Não
-4	420	Não	-4	420	Não	-2	817	Não



(cont.) Tabela B.8: Subtrechos hipotéticos indicados para implantação de faixa adicional para um trecho hipotético com COG=3

	COG 3 - V	'II		COG 3 - V	III
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
(%)	( <b>m</b> )	Adicional?	(%)	( <b>m</b> )	Adicional?
1	809	Não	2	951	Não
-3	599	Não	-2	814	Não
2	1067	Sim	1	1241	Não
-2	1051	Não	-4	558	Não
2	893	Sim	1	1137	Não
-1	1021	Não	-7	356	Não
1	1499	Não	4	421	Não
-2	1051	Não	-3	408	Não
1	1011	Não	5	247	Não
-2	999	Não	-1	1225	Não
			3	431	Não
			-3	857	Não
			7	279	Não
			-1	1075	Não

	COG 3 - I	X		COG 3 - 2	X
Rampa (%)	Extensão (m)	Faixa Adicional?	Rampa (%)	Extensão (m)	Faixa Adicional?
4	556	Sim	4	526	Sim
-4	466	Não	-7	257	Não
7	264	Não	1	817	Não
0	1964	Não	-2	1259	Não
2	880	Sim	0	2111	Sim
-7	297	Não	-1	1305	Não
2	1013	Sim	1	1087	Não
-6	352	Não	-1	1211	Não
1	1409	Não	1	951	Não
-1	1526	Não	-3	476	Não
7	366	Não			
-3	907	Não			



Tabela B.9: Subtrechos hipotéticos indicados para implantação de faixa adicional para um trecho hipotético com COG = 4

	GOG 4	1	trecno n		m COG = 4				
	COG 4 -			COG 4 - 1		_	COG 4- I		
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa	Rampa	Extensão	Faixa	
(%)	(m)	Adicional?	(%)	(m)	Adicional?	(%)	(m)	Adicional?	
4	458	Nãp	2	1104	Sim	2	835	Sim	
-5	690	Não	-4	723	Não	-4	429	Não	
5	485	Não	2	806	Sim	8	390	Não	
-4	536	Não	-3	767	Não	-9	343	Não	
6	401	Não	4	612	Sim	3	699	Sim	
-8	329	Não	-4	716	Não	-4	790	Não	
3	993	Sim	3	1152	Sim	4	506	Sim	
-4	1121	Não	-4	922	Não	-5	707	Não	
3	666	Sim	2	1111	Sim	5	478	Não	
-2	1247	Não	-3	1356	Não	-4	821	Não	
4	668	Sim	3	731	Sim	6	474	Não	
-9	264	Não				-3	1079	Não	
8	276	Não				3	1055	Sim	
-3	1011	Não				-5	449	Não	
3	855	Sim				3	945	Sim	
	COG 4 - I			COG 4 -			COG 4- V		
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa	Rampa	Extensão	Faixa	
(%)	( <b>m</b> )	Adicional?	(%)	(m)	Adicional?	(%)	( <b>m</b> )	Adicional?	
2	1166	Sim	3	848	Sim	8	298	Não	
-9	328	Não	-4	901	Não	-3	994	Não	
4	587	Sim	4	531	Sim	3	998	Sim	
-8	338	Não	-3	903	Não	-5	499	Não	
2	1044	Sim	7	349	Não	2	828	Sim	
-5	480	Não	-3	1222	Não	-4	957	Não	
8	371	Não	9	286	Não	3	902	Sim	
-5	669	Não	-4	695	Não	-5	646	Não	
8	359	Não	3	891	Sim	6	407	Sim	
-3	756	Não	-3	880	Não	-3	991	Não	
3	1043	Sim	4	655	Sim	3	1043	Sim	
-4	1072	Não	-4	897	Não	-5	781	Não	
3	710	Sim	8	318	Não	3	656	Sim	
-4	1077	Não	-4	624	Não				



(Cont.) Tabela B.9: Subtrechos hipotéticos indicados para implantação de faixa adicional para um trecho hipotético com COG = 4

	COG 4 - V	II		COG 4 - V	III
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
(%)	(m)	Adicional?	(%)	(m)	Adicional?
9	242	Não	2	1200	Sim
-2	1261	Não	-4	686	Não
6	512	Sim	7	364	Não
-9	347	Não	-4	495	Não
2	1192	Sim	4	684	Sim
-4	605	Não	-3	715	Não
7	205	Não	3	799	Sim
-4	978	Não	-5	797	Não
8	260	Não	8	234	Não
-4	776	Não	-2	1260	Não
2	869	Sim	9	394	Não
-6	436	Não	-9	351	Não
3	946	Sim	4	629	Sim
-3	820	Não	-5	554	Não
4	551	Sim	4	406	Não
			-6	432	Não
	COG 4 – I			COG 4 - 3	
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
(%)	( <b>m</b> )	Adicional?	(%)	( <b>m</b> )	Adicional?
-8	345	Não	3	812	Sim
3	836	Sim	-4	530	Não
-9	237	Não	8	257	Não
3	876	Sim	-5	529	Não
-3	883	Não	8	378	Sim
4	456	Não	-5	571	Não
-8	359	Não	6	453	Não
3	1110	Sim	-4	542	Não
-9	381	Não	3	897	Sim
2	917	Sim	-9	299	Não
-4	981	Não	2	879	Sim
4	758	Sim	-5	584	Não
-3	940	Não	3	857	Sim
6	431	Não	-8	203	Não
-6	490	Não	4	425	Não
			-3	971	Não
			2	813	Sim



Tabela B.10: Subtrechos hipotéticos indicados para implantação de faixa adicional para um trecho hipotético com COG=4

	COG 5 -	1		COG 5 - 1	II	COG 5- III			
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa	Rampa	Extensão	Faixa	
(%)	( <b>m</b> )	Adicional?	(%)	( <b>m</b> )	Adicional?	(%)	( <b>m</b> )	Adicional?	
9	847	Sim	7	1104	Sim	7	1740	Sim	
-9	1389	Não	-6	723	Não	-6	1144	Não	
9	670	Sim	2	806	Sim	8	1239	Sim	
-7	1451	Não	-8	767	Não	-7	415	Não	
9	482	Não	8	612	Sim	9	759	Sim	
-9	1123	Não	-8	716	Não	-6	505	Não	
7	581	Sim	9	1152	Sim	5	1328	Sim	
-7	1020	Não	-5	922	Não	-5	999	Não	
9	519	Sim	6	1111	Sim	7	508	Sim	
-7	1918	Não				-3	1363	Não	

	COG 4 - I	V		COG 4 - '	V		COG 4- V	/I
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
<b>(%)</b>	( <b>m</b> )	Adicional?	(%)	( <b>m</b> )	Adicional?	(%)	( <b>m</b> )	Adicional?
7	555	Sim	5	1235	Sim	7	527	Sim
-9	1223	Não	-2	2156	Não	-8	845	Não
8	869	Sim	3	1170	Sim	9	811	Sim
-7	894	Não	-3	1295	Não	-6	1162	Não
6	999	Sim	8	1161	Sim	5	1172	Sim
-5	769	Não	-4	830	Não	-8	698	Não
7	736	Sim	9	607	Sim	6	409	Não
-7	1287	Não	-1	1546	Não	-4	890	Não
5	1069	Sim				8	542	Sim
-1	1642	Não				-6	994	Não
						6	821	Sim
						-7	565	Não
						8	564	Sim



(Cont.) Tabela B.10: Subtrechos hipotéticos indicados para implantação de faixa adicional para um trecho hipotético com  ${\rm COG}=5$ 

	COG 5 - V	'II		COG 5 - V	Ш
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
(%)	( <b>m</b> )	Adicional?	(%)	( <b>m</b> )	Adicional?
8	1296	Sim	8	1005	Sim
-8	1088	Não	-7	462	Não
9	674	Sim	8	492	Não
-4	1024	Não	-8	826	Não
8	421	Não	5	739	Sim
-7	1352	Não	-8	493	Não
3	1072	Sim	6	581	Sim
-6	608	Não	-7	871	Não
3	1240	Sim	9	913	Sim
-8	1225	Não	-9	432	Não
			5	726	Sim
			-8	899	Não
			4	1561	Sim

	COG 5 – I	X		COG 5 - 2	X
Rampa	Extensão	Faixa	Rampa	Extensão	Faixa
(%)	(m)	Adicional?	(%)	(m)	Adicional?
4	933	Sim	9	1565	Sim
-5	971	Não	-7	520	Não
8	465	Não	3	1239	Sim
-6	429	Não	-9	501	Não
5	993	Sim	4	677	Sim
-5	942	Não	-7	1131	Não
9	649	Sim	9	857	Sim
-5	828	Não	-9	633	Não
4	1192	Sim	9	688	Sim
-4	802	Não	-9	404	Não
7	587	Sim	7	1785	Sim
-5	1209	Não			



## **APÊNDICE C**

Nesse Apêndice são representadas os Parâmetros a e o  $R^2$  para cada cenário de análise. As Tabelas C.1 a C.4 - Modelo Base, enquanto as Tabelas C.5 a C.8 - modelo quadrático.

	Tabela	C.1: Pa	ırâmetro				$FD_d$ – N	Iodelo I	Linear		
	COG	\ _ 1	COC	G=2	$\frac{Phv = 0\%}{COC}$		COG		COC	1 – 5	
FFS (km/h)	a	$R^2$	a	$\mathbf{F} = \mathbf{Z}$ $\mathbf{R}^2$	a	$R^2$	a	$=$ 4 $R^2$	A	$R^2$	
70	0,0118	0,9291	0,0105	0,9605	0,0116	0,9802	0,0183	0,9888	0,0188	0,9838	
80	0,0111	0,9519	0,0098	0,9537	0,0107	0,9753	0,0172	0,9818	0,0176	0,9662	
90	0,0106	0,9602	0,0094	0,9757	0,0102	0,9586	0,0164	0,9836	0,0166	0,9707	
100	0,0100	0,9644	0,0090	0,9794	0,0097	0,9721	0,0156	0,9578	0,0159	0,9582	
110	0,0098	0,9613	0,0088	0,9696	0,0094	0,9715	0,0150	0,9642	0,0153	0,9661	
		, ,	~~~		$P_{hv} = 10\%$				COG = 5		
EEC	COG	$\hat{s} = 1$	COC	G = 2	COC	$\hat{s} = 3$	COG	= 4	COC	$\hat{j} = 5$	
FFS (km/h)	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	
70	0,0128	0,9710	0,0108	0,9284	0,0121	0,9616	0,0182	0,9827	0,0180	0,9903	
80	0,0123	0,9858	0,0104	0,9543	0,0116	0,9630	0,0174	0,9831	0,0172	0,9847	
90 100	0,0117 0,0112	0,9854 0,9850	0,0100 0,0095	0,9618 0,9653	0,0111 0,0106	0,9761 0,9834	0,0169 0,0162	0,9665 0,9784	0,0170 0,0164	0,9905 0,9569	
110	0,0112	0,9830	0,0095	0,9633	0,0106	0,9834	0,0162	0,9842	0,0159	0,9509	
110	0,0112	0,7712	0,0025	•	$P_{hv} = 20\%$		0,0100	0,7012	0,0107	0,2001	
	COG	<b>5</b> = 1	COC	G = 2	COC	<b>5</b> = 3	COG	= 4	COC	<b>F</b> = <b>5</b>	
<b>FFS</b>	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	
(km/h)											
70 80	0,0129	0,9866 0,9884	0,0111	0,9724	0,0125	0,9288 0,9541	0,0183	0,9646	0,0184 0,0181	0,9821 0,9821	
90	0,0123 0,0121	0,9884	0,0106 0,0105	0,9882 0,9850	0,0117 0,0115	0,9541	0,0179 0,0175	0,9643 0,9770	0,0181	0,9821	
100	0,0121	0,9646	0,0103	0,9855	0,0113	0,9669	0,0173	0,9770	0,0173	0,9081	
110	0,0114	0,9671	0,0098	0,9911	0,0118	0,9629	0,0161	0,9796	0,0163	0,9824	
	.,	0,20.2	-,,,,,,,,		$P_{hv} = 30\%$		,		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,	
	COG	<del>5</del> = 1	COC	G = 2	COC		COG	= 4	COG = 5		
FFS (km/h)	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	a	$R^2$	
70	0,0134	0,9902	0,0113	0,9848	0,0124	0,9722	0,0173	0,9288	0,0172	0,9634	
80	0,0134	0,9845	0,0113	0,9881	0,0124	0,9858	0,0173	0,9492	0,0172	0,9654	
90	0,0126	0,9910	0,0107	0,9912	0,0119	0,9837	0,0170	0,9600	0,0164	0,9750	
100	0,0123	0,9582	0,0103	0,9696	0,0115	0,9875	0,0163	0,9656	0,0161	0,9826	
110	0,0119	0,9665	0,0100	0,9665	0,0112	0,9922	0,0159	0,9641	0,0157	0,9790	
					Phv = 409						
	COG	$\dot{s} = 1$	COC	G = 2	COC	$\frac{1}{2} = 3$	COG	= 4	COC	$\frac{1}{2} = 5$	
FFS (km/h)	а	$R^2$	а	$R^2$	a	$R^2$	а	$R^2$	а	$R^2$	
70	0,0126	0,9822	0,0112	0,9892	0,0121	0,9843	0,0168	0,9724	0,0157	0,9294	
80	0,0121	0,9810	0,0107	0,9852	0,0116	0,9858	0,0168	0,9849	0,0155	0,9539	
90	0,0118	0,9662	0,0105	0,9903	0,0113	0,9893	0,0166	0,9838	0,0153	0,9602	
100	0,0116	0,9747 0,9818	0,0102	0,9604	0,0111	0,9717	0,0161	0,9865	0,0150	0,9652	
110	0,0113	0,9818	0,0100	0,9714	$P_{hv} = 50\%$	0,9664	0,0157	0,9908	0,0145	0,9647	
	COG	2 – 1	COC	G=2		$\frac{\sigma}{r} = 3$	COG	- 4	COC	2 – 5	
<b>FFS</b>											
(km/h)	а	$R^2$	a	$R^2$	а	$R^2$	a	$R^2$	а	$R^2$	
70	0,0130	0,9635	0,0109	0,9815	0,0120	0,9896	0,0150	0,9845	0,0142	0,9708	
80	0,0124	0,9664	0,0105	0,9808	0,0116	0,9842	0,0149	0,9852	0,0142	0,9835	
90	0,0122	0,9761	0,0104	0,9652	0,0114	0,9895	0,0149	0,9869	0,0141	0,9821	
100 110	0,0119 0,0116	0,9833	0,0101 0,0099	0,9766 0,9834	0,0111 0,0109	0,9593 0,9743	0,0145	0,9677	0,0138	0,9842 0,9894	
110	0,0110	0,9772	0,0099	0,7634	0,0109	0,7/43	0,0140	0,9652	0,0133	0,7094	

1	àbela (	C.2: Pa	râmetro	s do Fa			$de FD_d$ -	Model	o Linea	r
FFS	COC	G = 1	COC	G = 2	$\frac{Phv = 0}{COC}$	$\frac{\%}{G=3}$	COG	= 4	COC	G = 5
(km/h)	a	$R^2$	а	$R^2$	a	$R^2$	a	$R^2$	a	$R^2$
70	0,0000	0,0000	0,0105	0,9492	0,0116	0,9703	0,0156	0,9366	0,0150	0,9483
80	0,0000	0,0000	0,0098	0,9705	0,0108	0,9524	0,0148	0,9632	0,0141	0,9503
90	0,0000	0,0000	0,0094	0,9742	0,0102	0,9593	0,0140	0,9553	0,0134	0,933
100	0,0000	0,0000	0,0090	0,9629	0,0098	0,9648	0,0133	0,945	0,0127	0,969
110	0,0000	0,0000	0,0088	0,9715	0,0094	0,9812	0,0129	0,9637	0,0122	0,967
	$P_{hv}=10\%$									
FFS	COC	G = 1	COC	G = 2	COC	G = 3	COG	= 4	COC	G = 5
( <i>km/h</i> )	а	$R^2$	а	$R^2$	а	$R^2$	a	$R^2$	а	$R^2$
70	0,0000	0,0000	0,0107	0,9716	0,0121	0,9702	0,0148	0,9643	0,0145	0,962
80	0,0000	0,0000	0,0104	0,9700	0,0113	0,979	0,0139	0,965	0,0136	0,9543
90	0,0000	0,0000	0,0100	0,9651	0,0109	0,9722	0,0133	0,9745	0,0129	0,946
100	0,0000	0,0000	0,0095	0,9681	0,0103	0,9761	0,0127	0,9804	0,0123	0,964
110	0,0000	0,0000	0,0094	0,9609	0,0101	0,9778	0,0123	0,9383	0,0119	0,9659
					$P_{hv} = 20$	%				
FFS	COC	G = 1	COC	G = 2	COC	G = 3	COG = 4		COC	G = 5
( <i>km/h</i> )	$\boldsymbol{A}$	$R^2$	а	$R^2$	а	$R^2$	a	$R^2$	a	$R^2$
70	0,0000	0,0000	0,0109	0,9667	0,0121	0,9714	0,0141	0,9764	0,0139	0,966
80	0,0000	0,0000	0,0104	0,9379	0,0113	0,9681	0,0136	0,9714	0,0133	0,974
90	0,0000	0,0000	0,0103	0,9697	0,0110	0,9715	0,0131	0,9753	0,0127	0,979
100	0,0000	0,0000	0,0098	0,9699	0,0105	0,9624	0,0125	0,9758	0,0124	0,935
110	0,0000	0,0000	0,0096	0,9732	0,0103	0,9728	0,0121	0,9644	0,0119	0,952
					$P_{hv} = 30$	%				
FFS	COC	G = 1	COC	G = 2	COC	G = 3	COG	= 4	COC	G = 5
( <i>km/h</i> )	а	$R^2$	а	$R^2$	а	$R^2$	a	$R^2$	$\boldsymbol{A}$	$R^2$
70	0,0000	0,0000	0,0112	0,9556	0,0120	0,941	0,0135	0,9711	0,0131	0,970
80	0,0000	0,0000	0,0107	0,9487	0,0116	0,9696	0,0133	0,9743	0,0126	0,974
90	0,0000	0,0000	0,0105	0,9643	0,0113	0,9694	0,0127	0,9626	0,0121	0,9749
100	0,0000	0,0000	0,0101	0,9672	0,0109	0,973	0,0122	0,9718	0,0118	0,963
110	0,0000	0,0000	0,0098	0,9667	0,0105	0,9724	0,0118	0,9768	0,0115	0,962
					Phv = 40					
FFS	COC		COC		COG		COG		COG	
(km/h)	<u>a</u>	R ²	<i>a</i>	R ²	<u>a</u>	R ²	a 0.0121	R ²	<i>a</i>	$R^2$
70	0,0000	0,0000	0,0111	0,9725	0,0112	0,9525	0,0131	0,9688	0,0125	0,9741
80	0,0000	0,0000	0,0106	0,9789	0,0106	0,9675	0,0131	0,9715	0,0121	0,9632
90	0,0000	0,0000	0,0104	0,929	0,0103	0,9691	0,0125	0,9729	0,0118	0,968
100	0,0000	0,0000	0,0101	0,946	0,0099 0,0096	0,9689	0,0120	0,9715	0,0115	0,9766
110	0,0000	0,0000	0,0098	0,9564	$\frac{0,0096}{P_{hv} = 50\%}$	0,9448	0,0116	0,968	0,0112	0,9684
	COC	2 – 1	COC		$\frac{P_{hv} = 30\%}{\text{COG}}$		COG	<u> </u>	COG	. – 5
<b>FFS</b>	a	$R^2$	a	$R^2$	a	$R^2$	a	- <b>4</b> R ²	a	$R^2$
(km/h)	0.0000	0.0000	0.0108	0.9727	0.0117	().97/65	().()116	0.9652	0.0118	0.9704
	0,0000	0,0000	0,0108 0,0104	0,9727 0,9732	0,0117 0,0111	0,9765 0,928	0,0116 0,0113	0,9652 0,9662	0,0118 0,0115	0,9704 0,9733



 100
 0,0000
 0,0000
 0,0099
 0,9632
 0,0103
 0,9555
 0,0106
 0,9411
 0,0110
 0,9656

 110
 0,0000
 0,0000
 0,0097
 0,9736
 0,0099
 0,952
 0,0102
 0,9694
 0,0105
 0,9746



	Γabela (	C.3: Pai	âmetros	s do Mo			$de FD_d$ -	Modelo	Linear	
EEC	COA	7 1	CO	2.2	Phv = 0		COC	4	604	
FFS (km/h)		G = 1		G = 2		G = 3	COG		COC	
	A 0.0120	$R^2$	<u>a</u>	R ²	<i>a</i>	$R^2$	<u>a</u>	$R^2$	<u>a</u>	$R^2$
70	0,0128	0,9614	0,0110	0,9706	0,0121	0,9698	0,0211	0,9744	0,0200	0,9910
80	0,0121	0,9670	0,0103	0,9644	0,0113	0,9553	0,0201	0,9638	0,0189	0,9711
90	0,0115	0,9707	0,0098	0,9736	0,0108	0,9526	0,0189	0,9647	0,0179	0,9711
100	0,0109	0,9740	0,0093	0,9707	0,0103	0,9635	0,0181	0,9829	0,0171	0,9632
110	0,0106	0,9712	0,0090	0,9569	$0.0100$ $P_{hv} = 10\%$	0,9598	0,0173	0,9809	0,0164	0,9851
					1 nv - 10 /	<u> </u>				
FFS (km/h)	COC	G = 1	COC	G = 2	COC	G = 3	COG	= 4	COC	G = 5
	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	$\boldsymbol{A}$	$R^2$
70	0,0133	0,9825	0,0112	0,9617	0,0125	0,9713	0,0202	0,9738	0,0188	0,9733
80	0,0125	0,9896	0,0105	0,9674	0,0118	0,9658	0,0192	0,9696	0,0179	0,9643
90	0,0120	0,9864	0,0101	0,9712	0,0113	0,9722	0,0185	0,9592	0,0172	0,9717
100	0,0114	0,9858	0,0096	0,9750	0,0108	0,9716	0,0176	0,9636	0,0165	0,9827
110	0,0111	0,9908	0,0094	0,9724	0,0104	0,9674	0,0170	0,9656	0,0160	0,9817
					$P_{hv}=20\%$	6				
FFS	COC	G = 1	COG = 2 $COG = 3$ $COG = 4$		G = 3 $COG = 4$		COC	G = 5		
( <i>km/h</i> )	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	a	$R^2$
70	0,0130	0,9903	0,0111	0,9829	0,0127	0,9596	0,0196	0,9707	0,0182	0,9709
80	0,0123	0,9903	0,0105	0,9892	0,0119	0,9660	0,0188	0,9674	0,0176	0,9691
90	0,0119	0,9905	0,0101	0,9858	0,0114	0,9711	0,0182	0,9714	0,0170	0,9585
100	0,0114	0,9641	0,0096	0,9860	0,0109	0,9742	0,0172	0,9708	0,0164	0,9615
110	0,0111	0,9848	0,0094	0,9909	0,0106	0,9716	0,0167	0,9650	0,0158	0,9642
					$P_{hv}=30\%$	6				
FFS	COC	G = 1	coc	G = 2	COC	G = 3	COG	= 4	COG = 5	
(km/h)	_	<b>D</b> 2	_	<b>D</b> 2	_	$R^2$	_	<b>D</b> 2	_	<b>D</b> 2
70	<i>a</i> 0,0132	$R^2$	0.0110	$R^2$ 0,9887	0.0124	0,9810	0.0190	R ²	0.0169	$R^2$
70		0,9726	0,0110	0,9887	0,0124		0,0180	0,9586	0,0168	0,9699
80 90	0,0126	0,9629	0,0105	0,9890	0,0119	0,9882	0,0179 0,0173	0,9650	0,0163	0,9656
100	0,0121 0,0117	0,9712 0,9811	0,0101 0,0097	0,9906	0,0114 0,0110	0,9840 0,9851	0,0173	0,9696 0,9729	0,0159 0,0154	0,9707 0,9715
110	0.0117	0.9803	0.0097	0,9038	0,0110	0,9831	0.0162	0,9729	0.0150	0,9713
110	0,0114	0,7003	0,0074	0,7040	Phv = 40		0,0102	0,2704	0,0130	0,7033
EEC	COC	G = 1	COC	G = 2	COC	G = 3	COG	_ 1	COC	· - 5
FFS (km/h)			COC		COC		COG		COC	
	A	$R^2$	а	$R^2$	а	<i>R</i> ²	а	$R^2$	а	$R^2$
70	0,0125	0,9695	0,0108	0,9710	0,0121	0,9871	0,0173	0,9786	0,0153	0,9575
80	0,0119	0,9673	0,0103	0,9604	0,0114	0,9874	0,0172	0,9871	0,0149	0,9653
90	0,0115	0,9579	0,0099	0,9701	0,0110	0,9901	0,0167	0,9818	0,0146	0,969
100	0,0111	0,9594	0,0096	0,9802	0,0106	0,9690	0,0161	0,9839	0,0142	0,9719
110	0,0109	0,9640	0,0094	0,9796	$0.0103$ $P_{hv} = 50\%$	0,9831	0,0157	0,9789	0,0139	0,9700
					1 hv - 30 /	0				
FFS	COC	G = 1	COC	G = 2	COC	G = 3	COG	= 4	COC	G = 5
( <i>km/h</i> )	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,0126	0,9691	0,0105	0,9686	0,0118	0,9711	0,0154	0,9848	0,0137	0,9764
80	0,0120	0,9620	0,0101	0,9677	0,0112	0,9592	0,0151	0,9838	0,0135	0,9846



90	0,0117	0,9652	0,0097	0,9554	0,0109	0,9672	0,0149	0,9872	0,0133	0,9812	
100	0,0112	0,9703	0,0093	0,9583	0,0105	0,9791	0,0144	0,9667	0,0129	0,9814	
110	0.0110	0.9629	0.0091	0.9629	0.0102	0.9783	0.0140	0.9826	0.0125	0 9894	



Ta	bela C.	4: Parâ	metros	do Mod	$\frac{\text{elo } 100}{Phv = 0\%}$		$de FD_d$	- Mode	lo Line	ar
FFS (km/h)	COC	G = 1	COC	G = 2	COC		COG	= 4	COG	G = 5
(KIII/II)	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,0118	0,9385	0,0182	0,9573	0,0190	0,9844	0,0242	0,9703	0,0242	0,9983
80	0,0112	0,9519	0,0175	0,9857	0,0187	0,9776	0,0228	0,9857	0,0228	0,9735
90	0,0107	0,9573	0,0165	0,9919	0,0176	0,9745	0,0215	0,9836	0,0216	0,9769
100	0,0101	0,9639	0,0158	0,9906	0,0168	0,9884	0,0204	0,9980	0,0204	0,9936
110	0,0098	0,9563	0,0152	0,9740	0,0162	0,9829	0,0195	0,9974	0,0195	0,9936
					$P_{hv}=10\%$	6				
FFS (km/h)	COC	G = 1	COC	G = 2	COC	G = 3	COG	= 4	COG	<b>F</b> = <b>5</b>
	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,0126	0,9901	0,0178	0,9405	0,0189	0,9580	0,0229	0,9947	0,0227	0,9898
80	0,0120	0,9947	0,0170	0,9531	0,0179	0,9895	0,0217	0,9947	0,0216	0,9940
90	0,0115	0,9898	0,0162	0,9578	0,0171	0,9926	0,0207	0,9896	0,0208	0,9926
100	0,0109	0,9875	0,0155	0,9655	0,0164	0,9941	0,0196	0,9905	0,0198	0,9974
110	0,0108	0,9910	0,0151	0,9573	0,0158	0,9930	0,0189	0,9902	0,0192	0,9968
EEC					$P_{hv}=209$	6				
FFS (km/h)	COC	G = 1	COC	G = 2	COC	G = 3	COG	= 4	COG	$\dot{\epsilon} = 5$
	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	$\boldsymbol{A}$	$R^2$
70	0,0126	0,9978	0,0169	0,9894	0,0184	0,9357	0,0214	0,9586	0,0214	0,9955
80	0,0120	0,9983	0,0161	0,9941	0,0172	0,9516	0,0204	0,9904	0,0206	0,9954
90	0,0117	0,9982	0,0154	0,9890	0,0165	0,9579	0,0196	0,9935	0,0199	0,9904
100	0,0112	0,9921	0,0148	0,9870	0,0157	0,9662	0,0187	0,9947	0,0191	0,9910
110	0,0110	0,9935	0,0144	0,9913	0,0153	0,9582	0,0181	0,9941	0,0185	0,9909
EEC					$P_{hv}=30\%$	6				
FFS (km/h)	COC	G = 1	COC	G = 2	COC	G = 3	COG	= 4	COG	$\dot{\epsilon} = 5$
	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	$\boldsymbol{A}$	$R^2$
70	0,0130	0,9907	0,0163	0,9969	0,0171	0,9873	0,0196	0,9378	0,0193	0,9577
80	0,0125	0,9942	0,0158	0,9974	0,0167	0,9936	0,0193	0,9494	0,0186	0,9914
90	0,0122	0,9924	0,0151	0,9977	0,0161	0,9884	0,0186	0,9569	0,0182	0,9919
100	0,0118	0,9964	0,0145	0,9890	0,0155	0,9869	0,0179	0,9662	0,0176	0,9945
110	0,0114	0,9954	0,0141	0,9927	0,0151	0,9913	0,0174	0,9582	0,0172	0,9940
FFS					Phv = 40					
(km/h)	COC	G = 1	COC	G = 2	COC		COG		COG	
	<i>a</i>	$R^2$	<i>a</i>	R ²	<i>a</i>	$R^2$	<i>a</i>	$R^2$	A 0.017.4	$R^2$
70	0,0122	0,9954	0,0163	0,9897	0,0174	0,9954	0,0184	0,9854	0,0174	0,9363
80	0,0116	0,9956	0,0156	0,9943	0,0165	0,9956	0,0182	0,9918	0,0170	0,9506
90	0,0113	0,9914	0,0149	0,9931	0,0158	0,9966	0,0177	0,9865	0,0166	0,9591
100	0,0111	0,9907	0,0143	0,9944	0,0151	0,9855	0,0169	0,9854	0,0161	0,9641
110	0,0108	0,9912	0,0140	0,9932	0,0148	0,9918	0,0165	0,9903	0,0157	0,9588
FFS	001	٦ 1	001	7 2	$P_{hv} = 50\%$		000	4	000	
(km/h)	COC	G = 1	COC	G = 2	COC		COG		COG	
	<i>a</i>	$R^2$	<i>a</i>	R ²	<i>a</i>	R ²	<i>a</i>	R ²	<i>a</i>	$R^2$
70 80	0,0125	0,9559	0,0156	0,9952	0,0166	0,9897	0,0167	0,9924	0,0155	0,9827
80	0,0120	0,9898	0,0150	0,9938	0,0158	0,9933	0,0164	0,9924	0,0153	0,9904
90 100	0,0117 0,0113	0,9914 0,9934	0,0143 0,0137	0,9907 0,9896	0,0152 0,0146	0,9922 0,9920	0,0159 0,0152	0,9940 0,9798	0,0149 0,0145	0,9856 0,9832
110	0,0113	0,9934	0,0137	0,9899	0,0146	0,9920	0,0132	0,9798	0,0143	0,9832
110	0,0112	0,3320	0,0134	0,2022	0,0143	ひ,ラブひラ	0,0140	0,3312	0,0140	0,7074



Tabela C.5: Parâmetros do Modelo Base de  $FD_d\,$  - Modelo Quadrático

					Phv = 0%					
FFS (km/h)	COG	S = 1	COG	S=2	COG	= 3	COG	= 4	COG	= 5
	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000007	0,9271	0,000006	0,9507	0,000007	0,9665	0,000012	0,9683	0,000012	0,9738
80	0,000007	0,9440	0,000006	0,9460	0,000006	0,9430	0,000011	0,9523	0,000011	0,9425
90	0,000007	0,9392	0,000006	0,9709	0,000006	0,9613	0,000010	0,9513	0,000010	0,942
100	0,000007	0,9429	0,000006	0,9549	0,000006	0,9755	0,000010	0,9886	0,000010	0,926
110	0,000006	0,9180	0,000006	0,9499	0,000006	0,9522	0,000010	0,9757	0,000010	0,987
					$P_{hv}=10\%$					
FFS (km/h)	COG	<del>}</del> = 1	COG	$\dot{z}=2$	COG	= 3	COG	= 4	COG	= 5
(10110,10)	а	$R^2$	а	$R^2$	a	$R^2$	а	$R^2$	а	$R^2$
70	0,000008	0,9858	0,000007	0,9288	0,000008	0,9524	0,000011	0,9662	0,000011	0,970
80	0,000008	0,9770	0,000007	0,9462	0,000007	0,9648	0,000011	0,9499	0,000011	0,950
90	0,000008	0,9718	0,000007	0,9384	0,000007	0,9711	0,000011	0,9746	0,000011	0,956
100	0,000007	0,9648	0,000006	0,9429	0,000007	0,9615	0,000010	0,9808	0,000011	0,989
110	0,000007	0,9590	0,000006	0,9174	0,000007	0,9595	0,000010	0,9597	0,000010	0,975
					$P_{hv} = 20\%$					
FFS (km/h)	COG	S = 1	COG	S=2	COG	= 3	COG	= 4	COG	= 5
(KIII/II)	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000008	0,9742	0,000007	0,9845	0,000008	0,9336	0,000011	0,9524	0,000011	0,968
80	0,000008	0,9724	0,000007	0,9753	0,000007	0,9487	0,000011	0,9678	0,000011	0,949
90	0,000008	0,9672	0,000007	0,9708	0,000007	0,9416	0,000011	0,9740	0,000011	0,978
100	0,000008	0,9304	0,000006	0,9646	0,000007	0,9448	0,000010	0,9605	0,000011	0,982
110	0,000008	0,9884	0,000006	0,9601	0,000007	0,9213	0,000010	0,9606	0,000010	0,960
					$P_{hv} = 30\%$	l.				
FFS	COG	<del>5</del> = 1	COG	$\dot{\epsilon} = 2$	COG	= 3	COG	= 4	COG	= 5
( <i>km/h</i> )	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000008	0,9695	0,000008	0,9741	0,000007	0,9855	0,000010	0,9382	0,000011	0,955
80	0,000008	0,9550	0,000007	0,9717	0,000007	0,9769	0,000010	0,9506	0,000011	0,972
90	0,000008	0,9576	0,000007	0,9670	0,000007	0,9731	0,000010	0,9474	0,000011	0,978
100	0,000008	0,9889	0,000007	0,9351	0,000007	0,9625	0,000010	0,9485	0,000011	0,968
110	0.000008	0.9780	0,000007	0,9884	0.000007	0,9600	0,000009	0,9252	0,000011	0,963
	.,	- ,	.,	- 7	Phv = 40%		.,		.,	- ,
FFS	COG	G = 1	COG	$\dot{\xi} = 2$	COG	= 3	COG	<b>= 4</b>	COG	= 5
( <i>km/h</i> )		D?		D?		n,		<b>D</b> )		n?
70	0.000000	R ²	0.000007	R ²	0.000008	$R^2$	0.000010	R ²	0.000010	0.0414
70	0,000008	0,9680	0,000007	0,9731	0,000008	0,9770	0,000010	0,9853	0,000010	0,9410
80	0,000008	0,9515	0,000007	0,9576	0,000007	0,9733	0,000010	0,9776	0,000010	0,9510
90	0,000008	0,9817	0,000007	0,9603	0,000007	0,9670	0,000010	0,9707	0,000010	0,946
100	0,000008	0,9857	0,000007	0,9900	0,000007	0,9370	0,000010	0,9623	0,000010	0,950
110	0,000008	0,9662	0,000007	0,9813	$0,000007$ $P_{hv} = 50\%$	0,9884	0,000010	0,9597	0,000010	0,9279
FFS	COG	S = 1	COC	<b>S</b> = 2	COG	= 3	COG	= 4	COG	= 5
( <i>km/h</i> )		D?		D?				<b>D</b> 2		n?
70	0.000000	R ²	0.000007	R ²	0.000007	R ²	0.000000	$R^2$	0.000000	R ²
70	0,000008	0,9552	0,000007	0,9694	0,000007	0,9746	0,000009	0,9757	0,000009	0,986
80	0,000008	0,9737	0,000007	0,9539	0,000007	0,9572	0,000009	0,9757	0,000009	0,9



90	0,000008	0,9755	0,000007	0,9820	0,000007	0,9609	0,000009	0,9687	0,000009	0,9732	
100	0,000008	0,9647	0,000007	0,9830	0,000007	0,9891	0,000009	0,9375	0,000009	0,9633	
110	0.000007	0.9641	0.000006	0.9653	0.000007	0.9770	0.000008	0.0880	0.000000	0.9610	



	.6: Parâr				Phv = 0%					
FFS (km/h)	COG	5 = <b>1</b>	COG	S=2	COG	= 3	COG	= 4	COG	· = <b>5</b>
` ′	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000000	0,0000	0,000006	0,9413	0,000007	0,9438	0,000010	0,931	0,000009	0,956
80	0,000000	0,0000	0,000006	0,9694	0,000007	0,9531	0,000009	0,9604	0,000009	0,955
90	0,000000	0,0000	0,000006	0,9487	0,000006	0,9692	0,000009	0,9872	0,000008	0,936
100	0,000000	0,0000	0,000006	0,9479	0,000006	0,956	0,000009	0,983	0,000008	0,986
110	0,000000	0,0000	0,000006	0,9671	0,000006	0,9725	0,000008	0,9778	0,000008	0,988
					$P_{hv}=10\%$	!				
FFS	COG	<del>;</del> = 1	COG	$\xi = 2$	COG	= 3	COG	<b>= 4</b>	COG	· = <b>5</b>
( <b>km/h</b> )	а	$R^2$	а	$R^2$	a	$R^2$	а	$R^2$	а	$R^2$
70	0,000000	0,0000	0,000007	0,9842	0,000008	0,9694	0,000009	0,9693	0,000009	0,958
80	0,000000	0,0000	0,000007	0,9825	0,000007	0,958	0,000009	0,9749	0,000009	0,987
90	0,000000	0,0000	0,000007	0,9819	0,000007	0,9586	0,000008	0,9647	0,000008	0,983
100	0,000000	0,0000	0,000006	0,9792	0,000007	0,9707	0,000008	0,9714	0,000008	0,979
110	0,000000	0,0000	0,000006	0,961	0,000007	0,9507	0,000008	0,9313	0,000008	0,98
					$P_{hv}=20\%$					
FFS	COG	<del>;</del> = 1	COG	<b>G</b> = <b>2</b>	COG	= 3	COG	= 4	COG	= 5
( <b>km/h</b> )	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000000	0,0000	0,000007	0,9779	0,000008	0,983	0,000009	0,9558	0,000009	0,977
80	0,000000	0,0000	0,000007	0,939	0,000007	0,9824	0,000008	0,9585	0,000008	0,965
90	0,000000	0,0000	0,000007	0,988	0,000007	0,9801	0,000008	0,972	0,000008	0,971
100	0,000000	0,0000	0,000006	0,9879	0,000007	0,965	0,000008	0,9493	0,000008	0,931
110	0,000000	0,0000	0,000006	0,9848	0,000007	0,9736	0,000008	0,9719	0,000008	0,946
					$P_{hv} = 30\%$	l				
FFS	COG	; = 1	COG	$\Xi = 2$	COG	= 3	COG	= 4	COG	= 5
( <b>km/h</b> )	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000000	0,0000	0,000007	0,9877	0,000007	0,9402	0,000008	0,9816	0,000009	0,960
80	0,000000	0,0000	0,000007	0,9849	0,000007	0,9878	0,000008	0,9807	0,000008	0,971
90	0,000000	0,0000	0,000007	0,9783	0,000007	0,988	0.000008	0,969	0,000008	0,951
100	0,000000	0,0000	0,000007	0,9802	0,000007	0,985	0,000007	0,9774	0,000008	0,975
110	0,000000	0,0000	0,000007	0,9781	0,000007	0,9832	0,000007	0,9625	0,000008	0,979
					Phv = 40%	ó				
FFS (km/h)	COG	5 = <b>1</b>	COG	<b>S</b> = 2	COG	= 3	COG	<b>= 4</b>	COG	r = <b>5</b>
	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000000	0,0000	0,000007	0,9688	0,000007	0,9863	0,000008	0,9879	0,000008	0,982
80	0,000000	0,0000	0,000007	0,971	0,000007	0,9803	0,000008	0,9894	0,000008	0,970
90	0,000000	0,0000	0,000007	0,9256	0,000007	0,9813	0,000008	0,9868	0,000008	0,972
100	0,000000	0,0000	0,000007	0,9414	0,000006	0,9796	0,000007	0,9836	0,000008	0,960
110	0,000000	0,0000	0,000007	0,9877	0,000006	0,9413	0,000007	0,9843	0,000008	0,961
					$P_{hv}=50\%$	1				
FFS (km/h)	COG	5 = 1	COG	$\xi = 2$	COG	= 3	COG	= 4	COG	: = <b>5</b>
	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000000	0,0000	0,000007	0,972	0,000007	0,9713	0,000007	0,9787	0,000007	0,989
	0,000000	0,0000	0,000007	0,9531	0,000007	0,9255	0,000007	0,9811	0,000007	0,987



90	0,000000	0,0000	0,000007	0,9757	0,000007	0,9385	0,000007	0,9795	0,000007	0,9852
100	0,000000	0,0000	0,000006	0,9796	0,000007	0,9858	0,000006	0,9385	0,000007	0,983
110	0,000000	0,0000	0,000006	0,9688	0,000007	0,9851	0,000006	0,9875	0,000007	0,983



		-		· ·	Phv = 0%			-		
FFS (km/h)	COG	5 = 1	COG	$\dot{z} = 2$	COG	= 3	COG	= 4	COG	= 5
(KIII)	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000008	0,9421	0,000007	0,9504	0,000007	0,9530	0,000013	0,9529	0,000012	0,9742
80	0,000008	0,9463	0,000006	0,9234	0,000007	0,9199	0,000013	0,9370	0,000012	0,943
90	0,000008	0,9454	0,000006	0,9546	0,000007	0,9284	0,000012	0,9422	0,000011	0,938
100	0,000007	0,9504	0,000006	0,9399	0,000006	0,9589	0,000012	0,9815	0,000011	0,929
110	0,000007	0,9304	0,000006	0,9336	0,000006	0,9323	0,000011	0,9743	0,000010	0,977
					$P_{hv}=10\%$					
FFS	COG	<del>5</del> = 1	COG	$\frac{1}{2} = 2$	COG	= 3	COG	= 4	COG	= 5
(km/h)	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000009	0,9798	0,000007	0,9455	0,000008	0,9520	0,000013	0,9567	0,000012	0,953
80	0,000008	0,9732	0,000007	0,9480	0,000008	0,9323	0,000012	0,9353	0,000011	0,937
90	0,000008	0,9662	0,000007	0,9469	0,000007	0,9546	0,000012	0,9363	0,000011	0,947
100	0,000008	0,9602	0,000006	0,9538	0,000007	0,9447	0,000011	0,9623	0,000011	0,981
110	0,000007	0,9550	0,000006	0,9316	0,000007	0,9447	0,000011	0,9387	0,000010	0,974
	·		·		$P_{hv} = 20\%$		·	· ·		-
FFS	COG	5 = 1	COG	$\xi = 2$	COG	= 3	COG	= 4	COG	= 5
(km/h)	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000008	0,9744	0,000007	0,9799	0,000008	0,9486	0,000012	0,9521	0,000011	0,958
80	0,000008	0,9731	0,000007	0,9742	0,000008	0,9507	0,000012	0,9385	0,000011	0,938
90	0,000008	0,9658	0,000006	0,9674	0,000007	0,9521	0,000011	0,9579	0,000011	0,940
100	0,000008	0,9301	0,000006	0,9602	0,000007	0,9545	0,000011	0,9463	0,000010	0,964
110	0,000007	0,9777	0,000006	0,9556	0,000007	0,9355	0,000010	0,9474	0,000010	0,941
					$P_{hv} = 30\%$					
FFS	COG	<del>.</del> = 1	COG	$\dot{z} = 2$	COG	= 3	COG:	<b>= 4</b>	COG	= 5
( <i>km/h</i> )										
70	<u>a</u>	$R^2$	<u>a</u>	R ²	<u>a</u>	R ²	<u>a</u>	R ²	<u>a</u>	R ²
70	0,000008	0,9544	0,000007	0,9755	0,000007	0,9813	0,000011	0,9527	0,000011	0,956
80	0,000008	0,9394	0,000007	0,9741	0,000007	0,9755	0,000010	0,9539	0,000011	0,942
90	0,000008	0,9507	0,000007	0,9675	0,000007	0,9688	0,000010	0,9551	0,000011	0,961
100	0,000007	0,9820	0,000007	0,9329	0,000007	0,9617	0,000010	0,9562	0,000010	0,950
110	0,000007	0,9760	0,000006	0,9785	0,000007 $Phv = 40%$	0,9587	0,000010	0,9388	0,000010	0,950
FFS	COG	S = 1	COG	S=2	COG	= 3	COG	= 4	COG	= 5
( <i>km/h</i> )	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000008	0,9609	0,000007	0,9571	0,000008	0,9756	0,000010	0,9824	0,000010	0,954
80	0,000008	0,9395	0,000007	0,9406	0,000007	0,9755	0,000010	0,9760	0,000010	0,955
90	0,000008	0,9444	0,000007	0,9536	0,000007	0,9687	0,000010	0,9698	0,000010	0,956
100	0,000007	0,9662	0,000006	0,9830	0,000007	0,9379	0,000010	0,9621	0,000009	0,957
110	0,000007	0,9432	0,000006	0,9774	0,000007	0,9800	0,000010	0,9587	0,000009	0,940
					$P_{hv} = 50\%$					
EEC	COG	S = 1	COG	G = 2	cog	= 3	COG	= 4	COG	= 5
FFS										
	а	$R^2$	а	$R^2$	a	$R^2$	a	$R^2$	а	$R^2$
	<i>a</i>	<b>R</b> ² 0,9569	<i>a</i> 0,000007	<b>R</b> ² 0,9621	<i>a</i> 0,000007	<b>R</b> ² 0,9577	<i>a</i> 0,000009	<b>R</b> ² 0,9775	<i>a</i> 0,000009	
(km/h)										<b>R</b> ² 0,983: 0,976:



100 0,000007 0,9497 0,000006 0,9669 0,000007 0,9830 0,000009 0,9398 0,000008 0,9630 0,000007 110 0,9506 0,000006 0,9450 0,000007 0,9776 0,000008 0,9796 0,000008 0,9600



Tabela C.8: Parâmetros do Modelo 100% NPZ de  $FD_d\,$  - Modelo Quadrático

					Phv = 0%					
FFS (km/h)	COG	$rac{1}{2} = 1$	COG	$\frac{1}{2} = 2$	COG	= 3	COG:	= 4	COG	= 5
<u> </u>	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$	а	$R^2$
70	0,000008	0,9374	0,000011	0,9496	0,000011	0,9311	0,000015	0,9290	0,000015	0,9637
80	0,000007	0,9391	0,000011	0,9200	0,000011	0,9191	0,000014	0,9310	0,000014	0,9258
90	0,000007	0,9385	0,000010	0,9399	0,000011	0,9238	0,000014	0,9307	0,000013	0,9333
100	0,000007	0,9467	0,000010	0,9500	0,000010	0,9435	0,000013	0,9520	0,000013	0,9485
110	0,000007	0,9200	0,000010	0,9176	0,000010	0,9306	0,000013	0,9555	0,000012	0,9540
					$P_{hv} = 10\%$					
FFS (km/h)	COG	<del>5</del> = 1	COC	$\dot{\epsilon} = 2$	COG	r=3	COG:	= 4	COG	= 5
( )	а	$R^2$	а	$R^2$	a	$R^2$	а	$R^2$	а	$R^2$
70	0,000008	0,9615	0,000011	0,9421	0,000012	0,9495	0,000014	0,9412	0,000014	0,9530
80	0,000008	0,9569	0,000011	0,9421	0,000011	0,9269	0,000014	0,9369	0,000014	0,9390
90	0,000008	0,9488	0,000010	0,9385	0,000011	0,9450	0,000013	0,9381	0,000013	0,9405
100	0,000007	0,9442	0,000010	0,9487	0,000011	0,9558	0,000013	0,9500	0,000013	0,9556
110	0,000007	0,9458	0,000010	0,9194	0,000010	0,9390	0,000012	0,9377	0,000013	0,9577
					$P_{hv} = 20\%$					
FFS (km/h)	COG	<b>F</b> = 1	COG	$\dot{z} = 2$	COG	= 3	COG:	= 4	COG	= 5
(14114,117)	a	$R^2$	а	$R^2$	a	$R^2$	а	$R^2$	а	$R^2$
70	0,000008	0,9651	0,000010	0,9633	0,000011	0,9425	0,000013	0,9502	0,000013	0,9471
80	0,000008	0,9633	0,000010	0,9583	0,000011	0,9433	0,000012	0,9373	0,000013	0,9443
90	0,000008	0,9625	0,000010	0,9504	0,000010	0,9431	0,000012	0,9531	0,000012	0,9439
100	0,000008	0,9460	0,000009	0,9442	0,000010	0,9494	0,000012	0,9602	0,000012	0,9549
110	0,000007	0,9558	0,000009	0,9465	0,000010	0,9228	0,000011	0,9473	0,000012	0,9458
					$P_{hv} = 30\%$					
FFS (km/h)	COG	S = 1	COG	<b>F</b> = 2	COG	= 3	COG :	= 4	COG	= 5
(/	а	$R^2$	а	$R^2$	a	$R^2$	а	$R^2$	а	$R^2$
70	0,000008	0,9590	0,000011	0,9673	0,000010	0,9656	0,000012	0,9488	0,000013	0,9514
80	0,000008	0,9462	0,000010	0,9660	0,000010	0,9611	0,000011	0,9457	0,000012	0,9488
90	0,000008	0,9464	0,000010	0,9645	0,000010	0,9541	0,000011	0,9460	0,000012	0,9586
100	0,000007	0,9590	0,000010	0,9456	0,000009	0,9467	0,000011	0,9522	0,000012	0,9667
110	0,000007	0,9619	0,000010	0,9594	0,000009	0,9476	0,000011	0,9255	0,000011	0,9542
	<u> </u>			<u> </u>	Phv = 40%	ó	<u>.</u>	<u> </u>		
FFS (km/h)	COG	<del>}</del> = 1	COG	<b>F</b> = 2	COG	= 3	COG:	= 4	COG	= 5
(ICIIC/IC)	а	$R^2$	а	$R^2$	a	$R^2$	а	$R^2$	a	$R^2$
70	0,000008	0,9522	0,000010	0,9635	0,000011	0,9703	0,000011	0,9680	0,000011	0,9488
80	0,000008	0,9510	0,000010	0,9533	0,000010	0,9699	0,000011	0,9625	0,000011	0,9462
90	0,000007	0,9546	0,000010	0,9512	0,000010	0,9662	0,000011	0,9554	0,000011	0,9470
100	0,000007	0,9629	0,000009	0,9630	0,000010	0,9446	0,000010	0,9491	0,000010	0,9532
110	0,000007	0,9526	0,000009	0,9662	0,000010	0,9628	0,000010	0,9490	0,000010	0,9277
					$P_{hv} = 50\%$					
FFS	COG	S = 1	COG	$\dot{\epsilon} = 2$	COG	= 3	COG	= 4	COG	= 5
(km/h)		n?	а	$R^2$	a	$R^2$	а	$R^2$	a	$R^2$
( <i>km/h</i> )	а	$R^2$				0.0674	0,000010	0,9734	0.000010	0,9711
70	<i>a</i> 0,000008	0,9520	0,000010	0,9594	0,000010	0,9674	0,000010	0,7734	0,000010	0,5/11
				0,9594 0,9588	0,000010 0,000010	0,9674	0,000010	0,9729	0,000010	0,9648
70	0,000008	0,9520	0,000010	· ·						
70 80	0,000008 0,000007	0,9520 0,9510	0,000010 0,000009	0,9588	0,000010	0,9603	0,000010	0,9729	0,000010	0,9648



## **APÊNDICE D**

Nesse Apêndice são apresentados os fatores de ajuste para cada COG (Faixa Adicional e NPZ). AS Tabelas D.1 a D.10 apresentam o fator de ajuste para o modelo linear. As Tabelas D.11 a D.20 são referentes ao Modelo Quadrático.

Figura D.1: Fator de ajuste para faixas adicionais de Subida - COG 1 – Modelo Linear

		Ì	Phv (%)			
	0	10	20	30	40	50
qd(veic/h)			FFSd =	70km/h		
200	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
400	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
600	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
800	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1200	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1400	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1600	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1800	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
qd(veic/h)			FFSd =	80 km/h		
200	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
400	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
600	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
800	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1200	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1400	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1600	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1800	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
qd(veic/h)	•		FFSd =	90 km/h		
200	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
400	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
600	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
800	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1200	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1400	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1600	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1800	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
qd(veic/h)			FFSd =	100 km/h		
200	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
400	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
600	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
800	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1200	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1400	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1600	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1800	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
q _d (veic/h)			$FFS_d = 1$	110 km/h	<u> </u>	
200	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
400	0,0000	0,0000	0,0000	0,000	0,0000	0,0000
600	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
800	0,0000	0,0000	0,0000	0,000	0,0000	0,0000
1000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1200	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000



1400	0,000	0,0000	0,0000	0,0000	0,0000	0,0000
1600	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1800	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000

Figura D.2: Fator de ajuste para faixas adicionais de Subida - COG 2 - Modelo Linear

	J 1		Phv (%)			
-	0	10	20	30	40	50
qd(veic/h)				= 70km/h		
200	0,0007	0,0068	0,0328	0,0271	0,0269	0,0306
400	0,0014	0,0006	0,0655	0,0543	0,0537	0,0611
600	0,0014	0,0130	0,0983	0,0343	0,0806	0,0917
800	0,0021	0,0272	0,0303	0,1086	0,1075	0,1222
1000	0,0026	0,0340	0,1639	0,1357	0,1343	0,1528
1200	0,0033	0,0408	0,1037	0,1629	0,1612	0,1833
1400	0,0042	0,0476	0,2294	0,1029	0,1881	0,2139
1600	0,0056	0,0544	0,2622	0,2172	0,2149	0,2445
1800	0,0063	0,0612	0,2949	0,2443	0,2418	0,2750
qd(veic/h)	0,0003	0,0012		80 km/h	0,2110	0,2750
200	0,0045	0,0132	0,0272	0,0333	0,0190	0,0314
400	0,0043	0,0132	0,0544	0,0666	0,0130	0,0629
600	0,0030	0,0203	0,0344	0,1000	0,0571	0,0023
800	0,0133	0,0537	0,1087	0,1000	0,0762	0,0243
1000	0,0177	0,0550	0,1359	0,1555	0,0752	0,1237
1200	0,0224	0,0002	0,1631	0,1000	0,0732	0,1372
1400	0,0207	0,0723	0,1031	0,1777	0,1143	0,2200
1600	0,0314	0,1060	0,1703	0,2552	0,1523	0,2515
1800	0,0339	0,1000	0,2173	0,2000	0,1323	0,2829
qd(veic/h)	0,0404	0,1192		= 90 km/h	0,1714	0,2029
200	0,0054	0,0028	0,0412	0,0445	0,0216	0,0396
400	0,0034	0,0028	0,0412	0,0443	0,0210	0,0390
600	0,0103	0,0033	0,0824	0,0830	0,0432	0,0792
800	0,0103	0,0083	0,1233	0,1333	0,0864	0,1188
1000	0,0217	0,0111	0,1047	0,1781	0,0804	0,1383
1200	0,0271	0,0139	0,2039	0,2220	0,1080	0,1375
1400	0,0320	0,0100	0,2882	0,2071	0,1230	0,2771
1600	0,0380	0,0194	0,2882	0,3110	0,1311	0,2771
1800	0,0434	0,0222	0,3706	0,4006	0,1727	0,3563
qd(veic/h)	0,0400	0,0247		100 km/h	0,1743	0,3303
200	0,0061	0,0075	0,0402	0,0450	0,0315	0,0370
400	0,0001	0,0073	0,0402	0,0430	0,0630	0,0370
600	0,0121	0,0131	0,1206	0,0300	0,0030	0,0741
800	0,0182	0,0220	0,1200	0,1330	0,0943	0,1111
1000	0,0303	0,0301	0,1008	0,1800	0,1200	0,1851
1200	0,0364	0,0377	0,2413	0,2230	0,1373	0,1831
1400	0,0304	0,0432	0,2415	0,2700	0,1850	0,2592
1600	0,0485	0,0603	0,3217	0,3600	0,2520	0,2962
1800	0,0546	0,0678	0,3619	0,4050	0,2835	0,3332
$q_d(veic/h)$	0,03 10	0,0070		110 km/h	0,2033	0,3332
200	0,0034	0,0287	0,0438	0,0406	0,0370	0,0441
400	0,0034	0,0287	0,0438	0,0400	0,0370	0,0441
600	0,0008	0,0373	0,0873	0,0813	0,0740	0,0882
800	0,0102	0,0800	0,1313	0,1219	0,1110	0,1323
1000	0,0130	0,1140	0,1731	0,1020	0,1480	0,1704
1200	0,0170	0,1433	0,2189	0,2032	0,1831	0,2647
1400	0,0204	0,2006	0,3064	0,2439	0,2221	0,2047
1600	0,0238	0,2293	0,3502	0,3252	0,2961	0,3529
1800	0,0306	0,2579	0,3939	0,3658	0,3331	0,3970



Figura D.3: Fator de ajuste para faixas adicionais de Subida - COG 3 - Modelo Linear

		]	Phv (%)			
	0	10	20	30	40	50
qd(veic/h)			FFSd =	70km/h		
200	0,0000	0,0145	0,0863	0,0758	0,1774	0,0686
400	0,0000	0,0289	0,1726	0,1517	0,3547	0,1373
600	0,0000	0,0434	0,2589	0,2275	0,5321	0,2059
800	0,0000	0,0579	0,3452	0,3033	0,7095	0,2746
1000	0,0000	0,0723	0,4315	0,3792	0,8869	0,3432
1200	0,0000	0,0868	0,5178	0,4550	1,0642	0,4119
1400	0,0000	0,1013	0,6041	0,5309	1,2416	0,4805
1600	0,0000	0,1157	0,6903	0,6067	1,4190	0,5492
1800	0,0000	0,1302	0,7766	0,6825	1,5963	0,6178
qd(veic/h)	0,0000	0,1002		80 km/h	1,000	0,0170
200	0,0000	0,0423	0,0679	0,0827	0,1948	0,1029
400	0,0000	0,0423	0,1358	0,1653	0,3896	0,2058
600	0,0000	0,1270	0,2038	0,2480	0,5844	0,3087
800	0,0000	0,1693	0,2038	0,3306	0,7791	0,3007
1000	0,0000	0,1075	0,3396	0,3300	0,7731	0,5145
1200		0,2110	0,3390		1,1687	
1400	0,0000			0,4959	,	0,6174
	0,0000	0,2963 0,3386	0,4754	0,5786	1,3635	0,7203 0,8232
1600	0,0000		0,5434	0,6612	1,5583	
1800	0,0000	0,3809	0,6113	0,7439	1,7531	0,9261
qd(veic/h)	0.0000	0.0514		90 km/h	0.0110	0.1054
200	0,0000	0,0514	0,1023	0,1105	0,2118	0,1354
400	0,0000	0,1028	0,2046	0,2210	0,4236	0,2709
600	0,0000	0,1541	0,3069	0,3315	0,6354	0,4063
800	0,0000	0,2055	0,4092	0,4421	0,8472	0,5417
1000	0,0000	0,2569	0,5115	0,5526	1,0590	0,6771
1200	0,0000	0,3083	0,6138	0,6631	1,2708	0,8126
1400	0,0000	0,3596	0,7161	0,7736	1,4826	0,9480
1600	0,0000	0,4110	0,8184	0,8841	1,6944	1,0834
1800	0,0000	0,4624	0,9207	0,9946	1,9062	1,2188
qd(veic/h)				100 km/h		
200	0,0000	0,0541	0,0961	0,1293	0,2465	0,1652
400	0,0000	0,1082	0,1922	0,2585	0,4930	0,3305
600	0,0000	0,1622	0,2883	0,3878	0,7396	0,4957
800	0,0000	0,2163	0,3844	0,5170	0,9861	0,6609
1000	0,0000	0,2704	0,4805	0,6463	1,2326	0,8261
1200	0,0000	0,3245	0,5766	0,7755	1,4791	0,9914
1400	0,0000	0,3786	0,6727	0,9048	1,7257	1,1566
1600	0,0000	0,4327	0,7688	1,0340	1,9722	1,3218
1800	0,0000	0,4867	0,8649	1,1633	2,2187	1,4871
q _d (veic/h)			$FFS_d = 1$	110 km/h		
200	0,0000	0,1028	0,1182	0,1333	0,2517	0,1821
400	0,0000	0,2056	0,2363	0,2666	0,5034	0,3641
600	0,0000	0,3083	0,3545	0,4000	0,7550	0,5462
800	0,0000	0,4111	0,4727	0,5333	1,0067	0,7283
1000	0,0000	0,5139	0,5909	0,6666	1,2584	0,9104
1200	0,0000	0,6167	0,7090	0,7999	1,5101	1,0924
1400	0,0000	0,7194	0,8272	0,9333	1,7617	1,2745
1600	0,0000	0,8222	0,9454	1,0666	2,0134	1,4566
1800	0,0000	0,9250	1,0636	1,1999	2,2651	1,6387



Figura D.4: Fator de ajuste para faixas adicionais de Subida - COG 4 - Modelo Linear

	<u> </u>		Phv (%)			
	0	10	20	30	40	50
qd(veic/h)				= 70km/h		
200	0,5462	0,6731	0,8390	0,7640	0,7361	0,6797
400	1,0925	1,3462	1,6780	1,5281	1,4722	1,3595
600	1,6387	2,0192	2,5169	2,2921	2,2083	2,0392
800	2,1850	2,6923	3,3559	3,0561	2,9444	2,7189
1000	2,7312	3,3654	4,1949	3,8201	3,6805	3,3986
1200	3,2775	4,0385	5,0339	4,5842	4,4166	4,0784
1400	3,8237	4,7116	5,8728	5,3482	5,1527	4,7581
1600	4,3700	5,3846	6,7118	6,1122	5,8889	5,4378
1800	4,9162	6,0577	7,5508	6,8763	6,6250	6,1175
qd(veic/h)	1,7102	0,0377		= 80 km/h	0,0250	0,1173
200	0,4948	0,7017	0,8632	0,8039	0,7395	0,7168
400	0,9897	1,4034	1,7265	1,6079	1,4790	1,4335
600	1,4845	2,1051	2,5897	2,4118	2,2184	2,1503
800	1,9793	2,8068	3,4530	3,2157	2,9579	2,1303
1000	2,4741	3,5085	4,3162	4,0197	3,6974	3,5838
1200	2,9690	4,2102	5,1794	4,8236	4,4369	4,3006
1400	3,4638	4,2102	6,0427	5,6275	5,1763	5,0173
1600	3,9586	5,6136	6,9059	6,4315	5,9158	5,7341
1800	4,4535	6,3153	7,7692	7,2354	6,6553	6,4509
-	4,4333	0,3133			0,0333	0,4309
qd(veic/h)	0.4720	0.7107		= 90 km/h	0.8228	0.7642
200	0,4730	0,7197	0,8850	0,8486	0,8228	0,7642
400 600	0,9460	1,4394	1,7700	1,6972	1,6456 2,4684	1,5283
800	1,4189	2,1591	2,6550	2,5458 3,3943		2,2925
	1,8919	2,8787	3,5399		3,2912	3,0566
1000	2,3649	3,5984	4,4249	4,2429	4,1140	3,8208
1200	2,8379	4,3181	5,3099	5,0915	4,9367	4,5849
1400	3,3109	5,0378	6,1949	5,9401	5,7595	5,3491
1600	3,7838	5,7575	7,0799	6,7887	6,5823	6,1133
1800	4,2568	6,4772	7,9649	7,6373	7,4051	6,8774
qd(veic/h)	0.4700	0.7000		100 km/h	0.0112	
200	0,4508	0,7093	0,8261	0,8226	0,8113	0,7703
400	0,9017	1,4186	1,6521	1,6453	1,6226	1,5406
600	1,3525	2,1279	2,4782	2,4679	2,4339	2,3109
800	1,8033	2,8371	3,3042	3,2906	3,2452	3,0812
1000	2,2542	3,5464	4,1303	4,1132	4,0565	3,8515
1200	2,7050	4,2557	4,9563	4,9359	4,8677	4,6218
1400	3,1558	4,9650	5,7824	5,7585	5,6790	5,3922
1600	3,6067	5,6743	6,6085	6,5812	6,4903	6,1625
1800	4,0575	6,3836	7,4345	7,4038	7,3016	6,9328
$q_d(veic/h)$				110 km/h		
200	0,4313	0,7515	0,8058	0,8332	0,8204	0,6105
400	0,8627	1,5031	1,6116	1,6665	1,6409	1,2211
600	1,2940	2,2546	2,4174	2,4997	2,4613	1,8316
800	1,7253	3,0061	3,2231	3,3330	3,2817	2,4422
1000	2,1566	3,7576	4,0289	4,1662	4,1021	3,0527
1200	2,5880	4,5092	4,8347	4,9994	4,9226	3,6632
1400	3,0193	5,2607	5,6405	5,8327	5,7430	4,2738
1600	3,4506	6,0122	6,4463	6,6659	6,5634	4,8843
1800	3,8819	6,7638	7,2521	7,4991	7,3839	5,4949



Figura D.5: Fator de ajuste para faixas adicionais de Subida - COG 5 – Modelo Linear

		1	Phv (%)			
	0	10	20	30	40	50
qd(veic/h)			FFSd =	70km/h		
200	0,7685	0,6940	0,8963	0,8071	0,6369	0,4784
400	1,5371	1,3879	1,7927	1,6143	1,2738	0,9567
600	2,3056	2,0819	2,6890	2,4214	1,9108	1,4351
800	3,0742	2,7758	3,5854	3,2285	2,5477	1,9134
1000	3,8427	3,4698	4,4817	4,0357	3,1846	2,3918
1200	4,6112	4,1638	5,3780	4,8428	3,8215	2,8701
1400	5,3798	4,8577	6,2744	5,6500	4,4585	3,3485
1600	6,1483	5,5517	7,1707	6,4571	5,0954	3,8268
1800	6,9168	6,2456	8,0671	7,2642	5,7323	4,3052
qd(veic/h)			FFSd =	80 km/h		
200	0,6952	0,7243	0,9569	0,8396	0,6794	0,5395
400	1,3904	1,4486	1,9137	1,6793	1,3588	1,0789
600	2,0855	2,1729	2,8706	2,5189	2,0382	1,6184
800	2,7807	2,8972	3,8274	3,3585	2,7176	2,1579
1000	3,4759	3,6215	4,7843	4,1981	3,3970	2,6973
1200	4,1711	4,3458	5,7411	5,0378	4,0764	3,2368
1400	4,8662	5,0701	6,6980	5,8774	4,7557	3,7763
	5,5614					
1600		5,7944	7,6548	6,7170	5,4351	4,3157
1800	6,2566	6,5187	8,6117	7,5567	6,1145	4,8552
qd(veic/h)				90 km/h		
200	0,6568	0,8029	0,9633	0,8532	0,7051	0,5814
400	1,3136	1,6058	1,9267	1,7064	1,4103	1,1628
600	1,9703	2,4087	2,8900	2,5596	2,1154	1,7442
800	2,6271	3,2116	3,8534	3,4128	2,8205	2,3256
1000	3,2839	4,0144	4,8167	4,2660	3,5257	2,9069
1200	3,9407	4,8173	5,7801	5,1192	4,2308	3,4883
1400	4,5975	5,6202	6,7434	5,9724	4,9360	4,0697
1600	5,2542	6,4231	7,7068	6,8256	5,6411	4,6511
1800	5,9110	7,2260	8,6701	7,6789	6,3462	5,2325
qd(veic/h)			FFSd = 1	100 km/h		
200	0,6391	0,8036	0,9028	0,8535	0,7004	0,5687
400	1,2782	1,6071	1,8055	1,7070	1,4008	1,1374
600	1,9174	2,4107	2,7083	2,5605	2,1013	1,7061
800	2,5565	3,2142	3,6110	3,4140	2,8017	2,2748
1000	3,1956	4,0178	4,5138	4,2675	3,5021	2,8435
1200	3,8347	4,8213	5,4165	5,1210	4,2025	3,4123
1400	4,4738	5,6249	6,3193	5,9744	4,9030	3,9810
1600	5,1130	6,4284	7,2221	6,8279	5,6034	4,5497
1800	5,7521	7,2320	8,1248	7,6814	6,3038	5,1184
q _d (veic/h)	-,	.,		110 km/h	-,	-,-10.
200	0,6121	0,8005	0,8632	0,8538	0,6626	0,5477
400	1,2241	1,6011	1,7264	1,7076	1,3252	1,0954
600	1,8362	2,4016	2,5896	2,5614	1,9878	1,6431
800	2,4482	3,2021	3,4528	3,4152	2,6504	2,1908
1000	3,0603	4,0026	4,3160	4,2691	3,3130	2,7384



1200	3,6723	4,8032	5,1792	5,1229	3,9756	3,2861	
1400	4,2844	5,6037	6,0424	5,9767	4,6382	3,8338	
1600	4,8964	6,4042	6,9056	6,8305	5,3008	4,3815	
1800	5,5085	7.2048	7.7688	7.6843	5.9635	4,9292	



Figura D.6: Fator de ajuste para NPZ - COG 1 — Modelo Linear

						hv (%)						
	0		10		20			0		0		50
NPZ	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%
$q_d(veic/h)$						$FFS_d =$	70km/h	!				
200	0,2134	0,0120	0,0932	0,0000	0,0345	0,0000	0,0000	0,0000	0,0000	0,0000	0,0406	0,0299
400	0,4269	0,0240	0,1864	0,0000	0,0689	0,0000	0,0000	0,0000	0,0000	0,0000	0,0812	0,0599
600	0,6403	0,0360	0,2796	0,0000	0,1034	0,0000	0,0000	0,0000	0,0000	0,0000	0,1218	0,0898
800	0,8537	0,0480	0,3728	0,0000	0,1378	0,0000	0,0000	0,0000	0,0000	0,0000	0,1624	0,1197
1000	1,0672	0,0601	0,4660	0,0000	0,1723	0,0000	0,0000	0,0000	0,0000	0,0000	0,2031	0,1497
1200	3,6319	2,4234	3,1172	0,0000	2,7806	0,0000	0,0000	0,0000	0,0000	0,0000	2,7224	2,6584
1400	1,4940	0,0841	0,6523	0,0000	0,2412	0,0000	0,0000	0,0000	0,0000	0,0000	0,2843	0,2095
1600	1,7075	0,0961	0,7455	0,0000	0,2757	0,0000	0,0000	0,0000	0,0000	0,0000	0,3249	0,2395
1800	1,9209	0,1081	0,8387	0,0000	0,3102	0,0000	0,0000	0,0000	0,0000	0,0000	0,3655	0,2694
$q_d(veic/h)$						$FFS_d =$	80 km/l	n				
200	0,1979	0,0075	0,0554	0,0000	0,0069	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
400	0,3957	0,0150	0,1109	0,0000	0,0139	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
600	0,5936	0,0225	0,1663	0,0000	0,0208	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
800	0,7914	0,0300	0,2217	0,0000	0,0277	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1000	0,9893	0,0375	0,2772	0,0000	0,0346	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1200	3,4112	2,2690	2,7849	0,0000	2,5021	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1400	1,3850	0,0524	0,3881	0,0000	0,0485	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1600	1,5829	0,0599	0,4435	0,0000	0,0554	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1800	1,7808	0,0674	0,4989	0,0000	0,0624	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
q _d (veic/h)						$FFS_d =$	90 km/l	n				
200	0,1783	0,0164	0,0494	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
400	0,3565	0,0328	0,0989	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
600	0,5348	0,0492	0,1483	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
800	0,7130	0,0656	0,1978	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1000	0,8913	0,0820	0,2472	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1200	3,1832	2,2121	2,6432	0,0000		0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1400	1,2478	0,1149	0,3461	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1600	1,4260		0,3956	0,0000		0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1800	1,6043	0,1477	0,4450	0,0000			0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
q _d (veic/h)						$FFS_d =$	100 km/	h				
200	0.2831	0,0130	0,0552	0,0000			0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
400	0.5663		0,1103	0,0000	· /	,	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
600	0.8494				,			0,0000	0,0000	0.0000	0,0000	0,0000
800	1,1326	- ,			,		0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
000	1,4157	0,0651		0,0000	,		0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1200	3,7076	2,0869	2,5633	0,0000			0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1400	1,9820		0,3861	0,0000			0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1600	2,2651		0,4412	0,0000			0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1800	2,5482			0,0000					0,0000	0,0000	0,0000	0,0000
q _d (veic/h)							110 km					
200	0,0000	0,0000	0,0000	0,0000	0,0000				00,00	00,00	00 0,000	0,000,0
400	0,0000											
600	0,0000											
800	0,0000									,		,
1000	0,0000											
1200	0,0000											
1200							5 5,000					, 5 5,0000
1400	0,0000	0,0000	0,0000	0,0000	0,0000	0,000	0,000	0,000	0,000	00,00	00,000	0,000



1800 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000



Figura D.7: Fator de ajuste para NPZ - COG 2 – Modelo Linear

						Phv (%)						
N.D.G		0 1000/		1000/		20		1000/		1000/	<b>500</b> /	50
NPZ	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%
q _d (veic/h)							= 70km/h					
200	0,0890	1,5420	0,0901	1,4085	0,0000	1,1543	0,0000	1,0037	0,0000		0,0000	0,9377
400	0,1780	3,0839	0,1803	2,8171	0,0000	2,3087	0,0000	2,0074	0,0000		0,0000	1,8755
600	0,2670	4,6259	0,2704	4,2256	0,0000	3,4630	0,0000	3,0110	0,0000	,	0,0000	2,8132
800	0,3560	6,1678	0,3605	5,6341	0,0000	4,6174	0,0000	4,0147	0,0000		0,0000	3,7509
1000	0,4450	7,7098	0,4507	7,0427	0,0000	5,7717	0,0000	5,0184	0,0000		0,0000	4,6887
1200	0,5340	9,2517	0,5408	8,4512	0,0000	6,9261	0,0000	6,0221	0,0000		0,0000	5,6264
1400	0,6230	10,7937	0,6309	9,8597	0,0000	8,0804	0,0000	7,0257	0,0000		0,0000	6,5641
1600	0,7120	12,3357	0,7211	11,2683	0,0000	9,2348	0,0000	8,0294	0,0000		0,0000	7,5018
1800	0,8010	13,8776	0,8112	12,6768	0,0000	10,3891	0,0000		0,0000	9,1210	0,0000	8,4396
q _d (veic/h)	0.0907	1.5210	0.0105	1 2107	0.0000		= 80 km/		0.0000	0.0777	0.0000	0.9027
200	0,0897	1,5319	0,0195	1,3187	0,0000	1,0978 2,1955		0,9907	0,0000		0,0000	0,8037
400	0,1794	3,0638	0,0390	2,6374	0,0000		0,0000	1,9813	0,0000			1,6074
600 800	0,2691	4,5958	0,0585	3,9561	0,0000	3,2933	0,0000	2,9720	0,0000		0,0000	2,4111
	0,3588	6,1277	0,0780	5,2748	0,0000	4,3911	0,0000	3,9626	0,0000		0,0000	3,2148
1000	0,4485	7,6596	0,0974	6,5935	0,0000	5,4888	0,0000	4,9533	0,0000		0,0000	4,0186
1200 1400	0,5382 0,6279	9,1915 10,7234	0,1169 0,1364	7,9122 9,2308	0,0000	6,5866 7,6844	0,0000	5,9439 6,9346	0,0000		0,0000	4,8223 5,6260
1600	0,0279	12,2553	0,1559	10,5495	0,0000	8,7821	0,0000	7,9252	0,0000	7,8214	0,0000	6,4297
1800	,	13,7873		11,8682	0,0000	9,8799	0,0000	8,9159	0,0000		0,0000	7,2334
q _d (veic/h)	,	,, -, -		,	-,,,,,,,,		= 90 km/		-,,,,,,,,,			7,===
200	0,0748	3 1,411	1 0,008	37 1,24	60 0,00				0,00	000 0.8	896 0,0	000 0,7576
400	0,1495	,	,	,						,		000 1,5152
600	0,2243											000 2,2728
800	0,299	1 5,644	3 0,034	18 4,98	40 0,00			00 3,56				000 3,0304
1000	0,3738	3 7,055	4 0,043	36 6,230	00,00	000 4,892	21 0,00	00 4,46	518 0,0	000 4,4	478 0,0	000 3,7880
1200	0,4486	8,466	5 0,052	23 7,470	61 0,00	000 5,870	05 0,00	00 5,35	641 0,00	000 5,3	373 0,0	000 4,5456
1400	0,5234	4 9,877	5 0,061	0 8,722	21 0,00	000 6,84	89 0,00	00 6,24	65 0,0	000 6,2	269 0,0	000 5,3032
1600	0,5982	,		,								000 6,0609
1800	0,6729	9 12,699	0,078	34 11,21	41 0,00				312 0,0	000 8,0	060 0,0	000 6,8185
$q_d(veic/h)$							= 100 km	/h				
200	0,1516	,		,								000 0,7165
400	0,3032			,			,	,				000 1,4329
600	0,4548	,		,						,	,	000 2,1494
800	0,6064			,						,	- , -	000 2,8658
1000	0,7580	,	,				,	,		, -	,	000 3,5823
1200	0,9095			,			,				,	000 4,2987
1400 1600	1,061			,								000 5,0152 000 5,7316
1800	1,2127 1,3643							00 - 6,59 $00 - 7.43$				000 5,7316
$q_d(veic/h)$		12,402	.0 0,200	10,04	100 0,00		: 110 km		.50 0,0	000 1,3	<del></del>	000 0,4481
200		1 290	0 000	00 1 100	08 000				57 0.00	000 00	067 0,0	000 0,7043
	0,0419	,		,			,					,
400 600	0,0838			,		,		,				000 1,4087 000 2,1130
800	0,123											000 2,1130
1000	0,107	,		,			,			,		000 2,8174
1200	0,2030		,	,								000 3,3217
1400	0,2934			,						,	,	000 4,2201
1600	0,3353			,		,		,				000 5,6347
1800	0,3772											000 6,3391



Figura D.8: Fator de ajuste para NPZ - COG 3 – Modelo Linear

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \frac{q_d(\textit{veic/h})}{200} = \frac{FFS_d = 70 \textit{km/h}}{1,4830} = \frac{70 \textit{km/h}}{1,48$
200 0,1016 1,4830 0,0650 1,3560 0,0519 1,1763 0,0055 0,9333 0,0000 1,0589 0,0000 0,916 400 0,2033 2,9660 0,1300 2,7120 0,1039 2,3527 0,0111 1,8666 0,0000 2,1178 0,0000 1,832 600 0,3049 4,4490 0,1950 4,0680 0,1558 3,5290 0,0166 2,7998 0,0000 3,1767 0,0000 2,748 800 0,4065 5,9320 0,2599 5,4239 0,2077 4,7053 0,0221 3,7331 0,0000 4,2356 0,0000 3,665
400       0,2033       2,9660       0,1300       2,7120       0,1039       2,3527       0,0111       1,8666       0,0000       2,1178       0,0000       1,832         600       0,3049       4,4490       0,1950       4,0680       0,1558       3,5290       0,0166       2,7998       0,0000       3,1767       0,0000       2,748         800       0,4065       5,9320       0,2599       5,4239       0,2077       4,7053       0,0221       3,7331       0,0000       4,2356       0,0000       3,665
600 0,3049 4,4490 0,1950 4,0680 0,1558 3,5290 0,0166 2,7998 0,0000 3,1767 0,0000 2,748 800 0,4065 5,9320 0,2599 5,4239 0,2077 4,7053 0,0221 3,7331 0,0000 4,2356 0,0000 3,665
800 0,4065 5,9320 0,2599 5,4239 0,2077 4,7053 0,0221 3,7331 0,0000 4,2356 0,0000 3,665
1000 0 5081 7 4150 0 3249 6 7799 0 2596 5 8817 0 0277 4 6664 0 0000 5 2944 0 0000 4 581
1000 0,5001 1,7150 0,5277 0,1777 0,2570 5,0017 0,0277 7,0004 0,0000 5,2544 0,0000 4,501
1200 0,6098 8,8980 0,3899 8,1359 0,3116 7,0580 0,0332 5,5997 0,0000 6,3533 0,0000 5,497
1400 0,7114 10,3810 0,4549 9,4919 0,3635 8,2344 0,0387 6,5330 0,0000 7,4122 0,0000 6,414
1600 0,8130 11,8640 0,5199 10,8479 0,4154 9,4107 0,0442 7,4663 0,0000 8,4711 0,0000 7,330
1800 0,9147 13,3470 0,5849 12,2039 0,4673 10,5870 0,0498 8,3995 0,0000 9,5300 0,0000 8,246
$q_d(veic/h)$ ) FFS _d = 80 km/h
200 0,1218 1,5885 0,0464 1,2714 0,0546 1,1017 0,0000 0,9350 0,0000 0,9858 0,0000 0,755
400 0,2436 3,1771 0,0928 2,5429 0,1091 2,2034 0,0000 1,8700 0,0000 1,9716 0,0000 1,509
600 0,3654 4,7656 0,1392 3,8143 0,1637 3,3052 0,0000 2,8049 0,0000 2,9574 0,0000 2,264
800 0,4872 6,3542 0,1856 5,0858 0,2182 4,4069 0,0000 3,7399 0,0000 3,9433 0,0000 3,019
1000 0,6091 7,9427 0,2320 6,3572 0,2728 5,5086 0,0000 4,6749 0,0000 4,9291 0,0000 3,774
1200 0,7309 9,5312 0,2784 7,6287 0,3273 6,6103 0,0000 5,6099 0,0000 5,9149 0,0000 4,529
1400 0,8527 11,1198 0,3248 8,9001 0,3819 7,7121 0,0000 6,5449 0,0000 6,9007 0,0000 5,284
1600 0,9745 12,7083 0,3713 10,1716 0,4365 8,8138 0,0000 7,4798 0,0000 7,8865 0,0000 6,039
1800 1,0963 14,2969 0,4177 11,4430 0,4910 9,9155 0,0000 8,4148 0,0000 8,8723 0,0000 6,794
$q_d(veic/h)   FFS_d = 90 \text{ km/h}$
200 0,1157 1,4733 0,0277 1,1909 0,0000 0,9861 0,0000 0,8363 0,0000 0,9005 0,0000 0,715
400 0,2313 2,9466 0,0555 2,3818 0,0000 1,9722 0,0000 1,6726 0,0000 1,8009 0,0000 1,429
600 0,3470 4,4199 0,0832 3,5727 0,0000 2,9584 0,0000 2,5089 0,0000 2,7014 0,0000 2,144
800 0,4626 5,8932 0,1110 4,7636 0,0000 3,9445 0,0000 3,3452 0,0000 3,6018 0,0000 2,859
1000 0,5783 7,3665 0,1387 5,9545 0,0000 4,9306 0,0000 4,1816 0,0000 4,5023 0,0000 3,574
1200 0,6939 8,8398 0,1665 7,1454 0,0000 5,9167 0,0000 5,0179 0,0000 5,4027 0,0000 4,289
1400 0,8096 10,3130 0,1942 8,3363 0,0000 6,9028 0,0000 5,8542 0,0000 6,3032 0,0000 5,004
1600 0,9252 11,7863 0,2220 9,5273 0,0000 7,8890 0,0000 6,6905 0,0000 7,2036 0,0000 5,719
1800 1,0409 13,2596 0,2497 10,7182 0,0000 8,8751 0,0000 7,5268 0,0000 8,1041 0,0000 6,434
$q_d(veic/h)   FFS_d = 100 \text{ km/h}$
200 0,2105 1,4081 0,0333 1,1627 0,0000 0,9414 0,0000 0,7946 0,0000 0,8028 0,0000 0,692
400 0,4210 2,8162 0,0665 2,3254 0,0000 1,8828 0,0000 1,5893 0,0000 1,6057 0,0000 1,384
600 0,6315 4,2244 0,0998 3,4881 0,0000 2,8242 0,0000 2,3839 0,0000 2,4085 0,0000 2,077
800 0,8420 5,6325 0,1330 4,6508 0,0000 3,7655 0,0000 3,1785 0,0000 3,2114 0,0000 2,769
1000 1,0525 7,0406 0,1663 5,8135 0,0000 4,7069 0,0000 3,9732 0,0000 4,0142 0,0000 3,461
1200 1,2630 8,4487 0,1995 6,9762 0,0000 5,6483 0,0000 4,7678 0,0000 4,8171 0,0000 4,154
1400 1,4735 9,8569 0,2328 8,1389 0,0000 6,5897 0,0000 5,5625 0,0000 5,6199 0,0000 4,846
1600 1,6840 11,2650 0,2660 9,3016 0,0000 7,5311 0,0000 6,3571 0,0000 6,4228 0,0000 5,538
1800 1,8945 12,6731 0,2993 10,4643 0,0000 8,4725 0,0000 7,1517 0,0000 7,2256 0,0000 6,230
$q_d(veic/h)   FFS_d = 110 \text{ km/h}$
200 0,1089 1,3558 0,0000 1,0429 0,0000 0,8900 0,0000 0,7881 0,0000 0,7857 0,0000 0,687
400 0,2177 2,7115 0,0000 2,0859 0,0000 1,7799 0,0000 1,5762 0,0000 1,5714 0,0000 1,374
600 0,3266 4,0673 0,0000 3,1288 0,0000 2,6699 0,0000 2,3643 0,0000 2,3571 0,0000 2,061
800 0,4354 5,4231 0,0000 4,1718 0,0000 3,5599 0,0000 3,1525 0,0000 3,1428 0,0000 2,749
1000 0,5443 6,7788 0,0000 5,2147 0,0000 4,4498 0,0000 3,9406 0,0000 3,9285 0,0000 3,436
1200 0,6531 8,1346 0,0000 6,2577 0,0000 5,3398 0,0000 4,7287 0,0000 4,7143 0,0000 4,123
1400 0,7620 9,4904 0,0000 7,3006 0,0000 6,2297 0,0000 5,5168 0,0000 5,5000 0,0000 4,810



 1600
 0,8709
 10,8461
 0,0000
 8,3436
 0,0000
 7,1197
 0,0000
 6,3049
 0,0000
 6,2857
 0,0000
 5,4981

 1800
 0,9797
 12,2019
 0,0000
 9,3865
 0,0000
 8,0097
 0,0000
 7,0930
 0,0000
 7,0714
 0,0000
 6,1853



Figura D.9: Fator de ajuste para NPZ - COG 4 – Modelo Linear

						ıv (%)						
ND7		1000/		1000/		1000/		1000/		1000/		1000/
NPZ ( i / n )	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%
q _d (veic/h)						$FFS_d =$						
200	0,5586	1,1781	0,3936	0,9374	0,2565	0,6192	0,1405	0,4591	0,0934	0,3265	0,0933	0,3502
400	1,1172	2,3563	0,7873	1,8747	0,5131	1,2384	0,2810	0,9183	0,1867	0,6531	0,1865	0,7004
600	1,6758	3,5344	1,1809	2,8121	0,7696	1,8576	0,4215	1,3774	0,2801	0,9796	0,2798	1,0506
800	2,2344	4,7126	1,5746	3,7494	1,0261	2,4768	0,5620	1,8365	0,3734	1,3062	0,3731	1,4007
1000 1200	2,7930 3,3517	5,8907 7,0688	1,9682 2,3619	4,6868 5,6241	1,2827 1,5392	3,0959 3,7151	0,7025 0,8429	2,2956 2,7548	0,4668 0,5601	1,6327 1,9593	0,4663 0,5596	1,7509 2,1011
1400	3,9103	8,2470	2,7555	6,5615	1,7957	4,3343	0,8429	3,2139	0,5601	2,2858	0,5390	2,4513
1600	4,4689	9,4251	3,1492	7,4988	2,0522	4,9535	1,1239	3,6730	0,0333	2,6124	0,0329	2,4313
1800	5,0275	10,6032	3,5428	8,4362	2,3088	5,5727	1,2644	4,1321	0,8402	2,9389	0,8394	3,1517
$q_d(veic/h)$	3,0273	10,0032	3,3420	0,4302	2,3000	$FFS_d =$		7,1321	0,0402	2,7307	0,0374	3,1317
	0.5650	1 1152	0.2621	0.0505	0.1702			0.2001	0.0016	0.2021	0.0225	0.2750
200 400	0,5658 1,1317	1,1152 2,2303	0,3621 0,7242	0,8585 1,7169	0,1793 0,3586	0,5014 1,0027	0,1121 0,2241	0,3991 0,7983	0,0816 0,1633	0,2921 0,5841	0,0335 0,0671	0,2759 0,5519
600	1,6975	3,3455	1,0863	2,5754	0,5379	1,5041	0,3362	1,1974	0,1033	0,8762	0,0071	0,3319
800	2,2634	4,4606	1,4484	3,4338	0,3379	2,0055	0,3302	1,5966	0,3266	1,1683	0,1000	1,1037
1000	2,8292	5,5758	1,8105	4,2923	0,8965	2,5069	0,5603	1,9957	0,3200	1,4604	0,1541	1,3797
1200	3,3951	6,6910	2,1726	5,1507	1,0758	3,0082	0,6723	2,3949	0,4898	1,7524	0,2012	1,6556
1400	3,9609	7,8061	2,5347	6,0092	1,2551	3,5096	0,7844	2,7940	0,5715	2,0445	0,2348	1,9315
1600	4,5268	8,9213	2,8968	6,8677	1,4344	4,0110	0,8964	3,1932	0,6531	2,3366	0,2683	2,2074
1800	5,0926	10,0364	3,2589	7,7261	1,6137	4,5123	1,0085	3,5923	0,7348	2,6286	0,3018	2,4834
q _d (veic/h)							90km/h					
200	0,5115	1,0299	0,3179	0,7584	0,1332	0,4134	0,0658	0,3254	0,0212	0,2047	0,0036	0,1970
400	1,0229	2,0597	0,6358	1,5167	0,2664	0,8269	0,1315	0,6507	0,0425	0,4094	0,0072	0,3939
600	1,5344	3,0896	0,9537	2,2751	0,3996	1,2403	0,1973	0,9761	0,0637	0,6141	0,0108	0,5909
800	2,0458	4,1194	1,2716	3,0334	0,5328	1,6538	0,2630	1,3014	0,0849	0,8189	0,0143	0,7878
1000	2,5573	5,1493	1,5895	3,7918	0,6661	2,0672	0,3288	1,6268	0,1061	1,0236	0,0179	0,9848
1200	3,0687	6,1791	1,9074	4,5501	0,7993	2,4807	0,3945	1,9521	0,1274	1,2283	0,0215	1,1817
1400	3,5802	7,2090	2,2253	5,3085	0,9325	2,8941	0,4603	2,2775	0,1486	1,4330	0,0251	1,3787
1600	4,0917	8,2388	2,5432	6,0668	1,0657	3,3076	0,5261	2,6028	0,1698	1,6377	0,0287	1,5756
1800	4,6031	9,2687	2,8611	6,8252	1,1989	3,7210	0,5918	2,9282	0,1910	1,8424	0,0323	1,7726
$q_d(veic/h)$						$FFS_d = .$	100 km/h	!				
200	0,6698	0,9539	0,2666	0,6820	0,1222	0,4032	0,0624	0,3203	0,0043	0,1716	0,0000	0,1398
400	1,3397	1,9078	0,5332	1,3639	0,2444	0,8064	0,1249	0,6405	0,0087	0,3432	0,0000	0,2795
600	2,0095	2,8617	0,7998	2,0459	0,3666	1,2096	0,1873	0,9608	0,0130	0,5147	0,0000	0,4193
800	2,6794	3,8156	1,0664	2,7279	0,4887	1,6128	0,2497	1,2811	0,0174	0,6863	0,0000	0,5591
1000	3,3492	4,7696	1,3330	3,4099	0,6109	2,0160		1,6014		0,8579	0,0000	0,6989
1200		5,7235										
1400		6,6774										
1600	5,3588									1,3726		
1800	6,0286	8,5852	2,3995	6,1377					0,0391	1,5442	0,0000	1,2580
q _d (veic/h)						$FFS_d = 1$	110 km/h	!				
200	0,4535	0,8948										
400	0,9070	,	,	,	,							
600		2,6844			0,3660			0,9113			0,0360	
800	,	3,5791		2,3538				1,2150			0,0480	*
1000	2,2676		0,9578	,		1,9530		1,5188			0,0600	0,8100
1200		5,3687				2,3436			0,0145		0,0720	0,9719
1400		6,2635	1,3410			2,7342			0,0169	,	0,0840	1,1339
1600	3,6281		1,5325					2,4300	0,0193	,		1,2959
1800	4,0816	8,0531	1,/241	5,2960	1,097/9	3,3153	0,5597	2,7338	0,0218	1,5/70	0,1079	1,45/9



Figura D.10: Fator de ajuste para NPZ - COG 5 – Modelo Linear

			,	0		hv (%)		0	4.	0		0
ND7	500/		500/		500/		500/		500/		500/	_
NPZ	50%	100%	50%	100%	50%	100% EES	50%	100%	50%	100%	50%	100%
$q_d(veic/h)$	0.2200	1.0725	0.1702	0.0454		$FFS_d = $		0.4200	0.0000	0.2247	0.0000	0.2575
200 400	0,2309	1,0735	0,1723 0,3446				,	,		0,3347		0,2575
	0,4618	2,1470	0,5446				,	0,8576	0,0000	0,6695 1,0042	0,0000	0,5150
600 800	,	3,2206 4,2941	0,5169			1,8072 2,4096		1,2863	0,0000	1,3390	0,0000	1,0299
1000		5.3676	0,8615				0,0000	1,7151 2,1439	0,0000	1,6737	0,0000	1,0299
1200	,	6,4411	1,0338						0,0000	2,0085	0,0000	1,5449
1400		7,5147	1,2061					3,0015	0,0000	2,3432	0,0000	1,8023
1600			1,3784		0,0000		,	3,4303	0,0000	2,6779	0,0000	2,0598
1800	*	,	,		0,0000					3,0127	0.0000	2,3173
$q_d(veic/h)$	2,0701	2,0017	1,5507	0,5002		$FFS_d = 0$		3,0370	0,0000	3,0127	0,0000	2,3173
200	0,2621	1,0449	0,1304	0,8679	0,0000			0.3753	0.0000	0,2857	0,0000	0,2110
400	0,5242	2,0899	0,2609			1,0063		0,7507		0,5715		0,4221
600	*	3,1348	0,3913				0,0000	1,1260	0,0000	0,8572	0,0000	0,6331
800	*	4,1797	0,5218					1,5013	0,0000	1,1429		0,8442
1000	1,0483	5,2247	0,6522				0,0000	1,8767	0,0000	1,1429	0,0000	1,0552
1200	, ,	6,2696	0,0322	5,2076				2,2520	0,0000	1,7144	0,0000	1,0552
	1,5725	,	0,7827									
1400 1600	1,8345 2,0966	7,3145 8,3595	1,0436			3,5221 4,0253		2,6273 3,0027	0,0000	2,0001 2,2859	0,0000	1,4773 1,6883
1800	2,3587	9,4044	1,1740		0,0000			3,3780		2,2839	0.0000	1,8994
	2,3367	9,4044	1,1740	7,0114				3,3760	0,0000	2,3710	0,0000	1,0994
q _d (veic/h)	0.0455	0.0004	0.05.10	0.5505		$FFS_d = 1$		0.0500	0.0000	0.2402	0.0000	0.1.100
200	0,2475	0,9894	0,0543				0,0000	,		0,2483	0,0000	0,1498
400	0,4949	1,9788					0,0000			0,4967		0,2997
600	0,7424	2,9681	0,1630			1,3911	0,0000		0,0000	0,7450	0,0000	0,4495
800	*	3,9575	0,2173			1,8547			0,0000	0,9933		0,5994
1000	1,2373	4,9469	0,2716		0,0000			,	0,0000	1,2416	0,0000	0,7492
1200	1,4847	5,9363	0,3259		0,0000			2,1132		1,4900	0,0000	0,8991
1400	1,7322	6,9257	0,3803					2,4654		1,7383	0,0000	1,0489
1600		7,9151	0,4346	6,0694			0,0000			1,9866	0,0000	1,1987
1800	2,2271	8,9044	0,4889	6,8281	0,0000			3,1698	0,0000	2,2350	0,0000	1,3486
q _d (veic/h)							00 km/h					
200	-,	0,9104	0,0268				0,0000			0,2139	0,0000	0,1306
400	*	1,8209			0,0000					0,4277	0,0000	0,2612
600	1,2018	2,7313	0,0804	2,0563		1,3549	,	,	0,0000	0,6416		0,3918
800	1,6024	3,6418	0,1072				0,0000		,	0,8554	0,0000	0,5224
1000				3,4272						1,0693	0,0000	,
1200				4,1126								
1400				4,7981								
1600				5,4835								
1800	3,6055	8,1940	0,2412	6,1690	0,0000				0,0000	1,9247	0,0000	1,1754
q _d (veic/h)						$FFS_d =$	110 km/l	h				
200	0,2321			0,6685				0,2971		0,2291		0,1460
400	0,4641		0,0399							0,8036		0,5924
600	0,6962					,			,	,		0,8887
800	0,9282		0,0799		0,0000	,		,				,
1000	1,1603								,			
1200	1,3923		0,1198							2,4108		,
1400	1,6244		0,1398							2,8126		,
1600	1,8565		0,1598			2,9242		2,7248		3,2144		2,3698
1800	2,0885	7,6174	0,1798	5,5524	0,0000	3,2897	0,0000	3,0654	0,0000	3,6162	0,000	2,6660



Figura D.11: Fator de ajuste para faixas adicionais de Subida - COG 1 - Modelo Quadrático

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
qd(veic/h)         FFSd = 70km/h           200         0,0000         0,0000         0,0000         0,0000         0,0000           400         0,0000         0,0000         0,0000         0,0000         0,0000           600         0,0000         0,0000         0,0000         0,0000         0,0000           800         0,0000         0,0000         0,0000         0,0000         0,0000           1000         0,0000         0,0000         0,0000         0,0000         0,0000           1200         0,0000         0,0000         0,0000         0,0000         0,0000	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
200         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000           400         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000           600         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000           800         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000           1000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000           1200         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
400         0,0000         0,0000         0,0000         0,0000         0,0000           600         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000           800         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000           1000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000           1200         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
600         0,0000         0,0000         0,0000         0,0000         0,0000           800         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000           1000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000           1200         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
800         0,0000         0,0000         0,0000         0,0000         0,0000           1000         0,0000         0,0000         0,0000         0,0000         0,0000           1200         0,0000         0,0000         0,0000         0,0000         0,0000	0,0000 0,0000 0,0000 0,0000 0,0000
1000         0,0000         0,0000         0,0000         0,0000         0,0000           1200         0,0000         0,0000         0,0000         0,0000         0,0000	0,0000 0,0000 0,0000 0,0000
1200 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000 0,0000 0,0000
	0,0000 0,0000
	0,0000
1600 0,0000 0,0000 0,0000 0,0000 0,0000	
1800 0,0000 0,0000 0,0000 0,0000 0,0000	
qd(veic/h) $FFSd = 80  km/h$	
200 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
400 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
600 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
800 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1000 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1200 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1400 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1600 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1800 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
qd(veic/h)   FFSd = 90  km/h	0,0000
200 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
400 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
600 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
800 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1000 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1200 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1400 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1600 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1800 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
qd(veic/h)   FFSd = 100 km/h	0,0000
	0.0000
	0,0000
400 0,0000 0,0000 0,0000 0,0000 0,0000 600 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000 0,0000
800 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1000 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1200 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1400 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1600 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1800 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
$q_d(veic/h) \qquad FFS_d = 110 \text{ km/h}$	0,0000
	0.0000
200 0,0000 0,0000 0,0000 0,0000 0,0000 400 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000 0,0000
	0,0000
	,
800 0,0000 0,0000 0,0000 0,0000 0,0000 1000 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000 0,0000
1200 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000
1400 0,0000 0,0000 0,0000 0,0000 0,0000 1400 0,0000 0,0000 0,0000	0,0000
1600 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 1600	0,0000
1800 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000



Figura D.12: Fator de ajuste para faixas adicionais de Subida - COG 2 - Modelo Quadrático

			Phv (%)			
	0	10	20	30	40	50
qd(veic/h)			FFSd =	70km/h		
200	0,0000	0,0009	0,0052	0,0031	0,0019	0,0031
400	0,0000	0,0034	0,0207	0,0123	0,0077	0,0123
600	0,0000	0,0077	0,0466	0,0278	0,0173	0,0277
800	0,0000	0,0136	0,0829	0,0494	0,0307	0,0492
1000	0,0000	0,0213	0,1296	0,0771	0,0480	0,0769
1200	0,0000	0,0307	0,1866	0,1111	0,0691	0,1107
1400	0,0000	0,0418	0,2539	0,1512	0,0940	0,1507
1600	0,0000	0,0546	0,3317	0,1974	0,1228	0,1968
1800	0,0000	0,0690	0,4198	0,2499	0,1554	0,2491
$q_d(veic/h)$			$FFS_d =$	80 km/h		
200	0,0004	0,0020	0,0040	0,0037	0,0004	0,0027
400	0,0017	0,0079	0,0161	0,0146	0,0016	0,0109
600	0,0039	0,0177	0,0362	0,0329	0,0037	0,0246
800	0,0069	0,0314	0,0644	0,0585	0,0066	0,0438
1000	0,0108	0,0491	0,1006	0,0914	0,0102	0,0684
1200	0,0155	0,0707	0,1448	0,1316	0,0148	0,0985
1400	0,0211	0,0962	0,1971	0,1791	0,0201	0,1341
1600	0,0276	0,1256	0,2575	0,2340	0,0262	0,1752
1800	0,0349	0,1590	0,3259	0,2961	0,0332	0,2217
q _d (veic/h)				90 km/h		
200	0,0005	0,0001	0,0060	0,0057	0,0001	0,0032
400	0,0018	0,0005	0,0241	0,0227	0,0006	0,0128
600	0,0041	0,0011	0,0542	0,0510	0,0013	0,0287
800	0,0073	0,0019	0,0963	0,0907	0,0023	0,0511
1000	0,0114	0,0030	0,1505	0,1417	0,0036	0,0798
1200	0,0164	0,0044	0,2167	0,2040	0,0052	0,1149
1400	0,0223	0,0059	0,2950	0,2777	0,0071	0,1564
1600	0,0292	0,0078	0,3853	0,3627	0,0092	0,2043
1800	0,0369	0,0098	0,4877	0,4591	0,0117	0,2585
$q_d(veic/h)$			$FFS_d = 1$	100 km/h		
200	0,0003	0,0000	0,0053	0,0056	0,0015	0,0033
400	0,0011	0,0000	0,0213	0,0224	0,0060	0,0132
600	0,0024	0,0000	0,0479	0,0503	0,0134	0,0298
800	0,0043	0,0000	0,0852	0,0895	0,0239	0,0530
1000	0,0067	0,0000	0,1331	0,1398	0,0373	0,0828
1200	0,0097	0,0000	0,1917	0,2013	0,0537	0,1192
1400	0,0132	0,0000	0,2609	0,2740	0,0731	0,1623
1600	0,0172	0,0000	0,3408	0,3579	0,0955	0,2119
1800	0,0218	0,0000	0,4314	0,4529	0,1209	0,2682
$q_d(veic/h)$			$FFS_d = 1$	110 km/h		
200	0,0006	0,0032	0,0062	0,0043	0,0016	0,0036
400	0,0024	0,0127	0,0246	0,0173	0,0065	0,0146
600	0,0054	0,0285	0,0554	0,0390	0,0146	0,0328
800	0,0096	0,0507	0,0984	0,0694	0,0259	0,0584



1000	0,0150	0,0792	0,1538	0,1084	0,0404	0,0912	
1200	0,0216	0,1140	0,2214	0,1561	0,0582	0,1313	
1400	0,0294	0,1552	0,3014	0,2124	0,0793	0,1787	
1600	0,0385	0,2027	0,3936	0,2774	0,1035	0,2335	
1800	0,0487	0,2566	0,4982	0,3511	0,1310	0,2955	



Figura D.13: Fator de ajuste para faixas adicionais de Subida - COG 3 - Modelo Quadrático

			Phv (%)			
	0	10	20	30	40	50
qd(veic/h)			FFSd =	70km/h		
200	0,0000	0,0055	0,0114	0,0079	0,0240	0,0022
400	0,0000	0,0219	0,0456	0,0318	0,0959	0,0087
600	0,0000	0,0493	0,1025	0,0715	0,2158	0,0196
800	0,0000	0,0877	0,1823	0,1272	0,3837	0,0349
1000	0,0000	0,1370	0,2848	0,1987	0,5996	0,0545
1200	0,0000	0,1973	0,4101	0,2861	0,8634	0,0784
1400	0,0000	0,2685	0,5582	0,3894	1,1752	0,1068
1600	0,0000	0,3507	0,7290	0,5087	1,5349	0,1394
1800	0,0000	0,4439	0,9227	0,6438	1,9426	0,1765
$q_d(veic/h)$			$FFS_d =$	80 km/h		
200	0,0000	0,0100	0,0077	0,0081	0,0267	0,0056
400	0,0000	0,0401	0,0306	0,0325	0,1069	0,0223
600	0,0000	0,0903	0,0689	0,0731	0,2405	0,0503
800	0,0000	0,1605	0,1224	0,1300	0,4276	0,0894
1000	0,0000	0,2508	0,1913	0,2031	0,6681	0,1397
1200	0,0000	0,3611	0,2755	0,2925	0,9620	0,2011
1400	0,0000	0,4915	0,3750	0,3981	1,3094	0,2738
1600	0,0000	0,6420	0,4898	0,5199	1,7103	0,3576
1800	0,0000	0,8125	0,6198	0,6580	2,1645	0,4526
q _d (veic/h)			$FFS_d =$	90 km/h		
200	0,0000	0,0101	0,0121	0,0114	0,0287	0,0092
400	0,0000	0,0406	0,0484	0,0456	0,1146	0,0369
600	0,0000	0,0913	0,1088	0,1025	0,2579	0,0831
800	0,0000	0,1622	0,1935	0,1822	0,4584	0,1478
1000	0,0000	0,2535	0,3023	0,2847	0,7163	0,2309
1200	0,0000	0,3650	0,4354	0,4100	1,0315	0,3325
1400	0,0000	0,4969	0,5926	0,5581	1,4040	0,4526
1600	0,0000	0,6490	0,7740	0,7289	1,8338	0,5912
1800	0,0000	0,8213	0,9796	0,9225	2,3208	0,7482
$q_d(veic/h)$			$FFS_d =$	100 km/h		
200	0,0000	0,0093	0,0113	0,0141	0,0328	0,0131
400	0,0000	0,0374	0,0451	0,0565	0,1313	0,0524
600	0,0000	0,0841	0,1016	0,1271	0,2955	0,1178
800	0,0000	0,1495	0,1806	0,2259	0,5253	0,2095
1000	0,0000	0,2336	0,2821	0,3530	0,8207	0,3273
1200	0,0000	0,3363	0,4063	0,5084	1,1818	0,4713
1400	0,0000	0,4578	0,5530	0,6919	1,6086	0,6416
1600	0,0000	0,5979	0,7222	0,9038	2,1010	0,8380
1800	0,0000	0,7568	0,9141	1,1438	2,6591	1,0605
q _d (veic/h)			$FFS_d =$	110 km/h		
200	0,0000	0,0152	0,0131	0,0132	0,0336	0,0155
400	0,0000	0,0606	0,0525	0,0528	0,1343	0,0621
600	0,0000	0,1365	0,1181	0,1188	0,3021	0,1396
800	0,0000	0,2426	0,2100	0,2112	0,5370	0,2482
1000	0,0000	0,3791	0,3281	0,3300	0,8391	0,3878
1200	0,0000	0,7429	0,6431	0,6469	1,6446	0,7601
1400	0,0000	0,5458	0,4725	0,4753	1,2083	0,5585



1600	0,0000	0,9704	0,8399	0,8449	2,1480	0,9928	
1800	0.0000	1.2281	1.0630	1.0693	2.7186	1.2566	



Figura D.14: Fator de ajuste para faixas adicionais de Subida - COG 4 - Modelo Quadrático

			Phv (%)			
	0	10	20	30	40	50
qd(veic/h)			FFS _d =	= 70km/h		
200	0,0726	0,0859	0,1055	0,0897	0,0852	0,0857
400	0,2906	0,3434	0,4222	0,3588	0,3409	0,3430
600	0,6538	0,7727	0,9499	0,8072	0,7671	0,7717
800	1,1623	1,3736	1,6887	1,4350	1,3638	1,3719
1000	1,8162	2,1463	2,6387	2,2422	2,1309	2,1437
1200	2,6153	3,0906	3,7997	3,2288	3,0684	3,0869
1400	3,5597	4,2067	5,1718	4,3947	4,1765	4,2016
1600	4,6493	5,4945	6,7550	5,7401	5,4550	5,4878
1800	5,8843	6,9539	8,5492	7,2648	6,9040	6,9455
qd(veic/h)				80 km/h	,	,
200	0,0646	0,0925	0,1063	0,0920	0,0842	0,0882
400	0,2585	0,3701	0,4251	0,3681	0,3366	0,3528
600	0,5817	0,8327	0,9564	0,8281	0,7574	0,7937
800	1,0341	1,4804	1,7003	1,4722	1,3464	1,4110
1000	1,6158	2,3131	2,6568	2,3004	2,1038	2,2047
1200	2,3268	3,3308	3,8258	3,3125	3,0294	3,1748
1400	3,1670	4,5336	5,2073	4,5087	4,1234	4,3213
1600	4,1365	5,9215	6,8014	5,8890	5,3857	5,6441
1800	5,2353	7,4944	8,6080	7,4532	6,8162	7,1433
qd(veic/h)	3,2333	7,4344		= 90 km/h	0,6102	7,1433
200	0,0605	0,0963	0,1105	0,0972	0,0967	0,0945
400	0,0003	0,3851	0,1103	0,3886	0,3870	0,0343
600	0,5442	0,8664	0,4421	0,3880	0,3870	0,8506
800	0,9675	1,5403	1,7684	1,5544	1,5480	1,5122
1000	1,5117	2,4068	2,7631	2,4288	2,4187	2,3629
1200	2,1769	3,4657	3,9789	3,4974	3,4830	3,4025
1400	2,9630	4,7172	5,4157	4,7604	4,7407	4,6312
1600 1800	3,8700	6,1613 7,7979	7,0736	6,2177	6,1919	6,0489
	4,8980	1,1919	8,9525	7,8693	7,8367	7,6557
qd(veic/h)	0.0550	0.0020		100 km/h	0.0021	0.0000
200	0,0578	0,0930	0,1021	0,0932	0,0921	0,0929
400	0,2314	0,3721	0,4086	0,3726	0,3686	0,3716
600	0,5206	0,8372	0,9193	0,8384	0,8292	0,8361
800	0,9254	1,4884	1,6343	1,4905	1,4742	1,4864
1000	1,4460	2,3257	2,5535	2,3289	2,3034	2,3225
1200	2,0823	3,3490	3,6771	3,3536	3,3170	3,3444
1400	2,8342	4,5583	5,0049	4,5646	4,5148	4,5521
1600	3,7018	5,9538	6,5371	5,9620	5,8968	5,9456
1800	4,6851	7,5352	8,2735	7,5456	7,4632	7,5249
$q_d(veic/h)$			$FFS_d =$	110 km/h		
200	0,0566	0,0984	0,0987	0,0945	0,0941	0,0925
400	0,2262	0,3938	0,3950	0,3781	0,3765	0,3701
600	0,5090	0,8860	0,8887	0,8507	0,8471	0,8327
800	0,9049	1,5750	1,5800	1,5123	1,5060	1,4804
1000	1,4138	2,4610	2,4687	2,3630	2,3531	2,3131
1200	2,0359	3,5438	3,5550	3,4028	3,3885	3,3309
1400	2,7711	4,8235	4,8387	4,6315	4,6121	4,5337
1600	3,6194	6,3001	6,3200	6,0493	6,0239	5,9216
1800	4,5809	7,9736	7,9987	7,6562	7,6240	7,4945



Figura D.15: Fator de ajuste para faixas adicionais de Subida - COG 5 - Modelo Quadrático

	•		Phv (%)			
	0	10	20	30	40	50
qd(veic/h)	-			= 70km/h		
200	0,0958	0,0890	0,1134	0,1098	0,0797	0,0588
400	0,3830	0,3560	0,4536	0,4393	0,3187	0,2353
600	0,8618	0,8009	1,0205	0,9885	0,7171	0,5295
800	1,5320	1,4238	1,8143	1,7574	1,2749	0,9413
1000	2,3938	2,2247	2,8348	2,7459	1,9920	1,4707
1200	3,4470	3,2036	4,0821	3,9540	2,8684	2,1178
1400	4,6918	4,3605	5,5562	5,3819	3,9043	2,8826
1600	6,1281	5,6953	7,2570	7,0294	5,0994	3,7650
1800	7,7558	7,2082	9,1847	8,8966	6,4540	4,7651
qd(veic/h)				80 km/h	,	,
200	0,0856	0,0937	0,1206	0,1142	0,0840	0,0659
400	0,3424	0,3749	0,4822	0,4566	0,3359	0,2635
600	0,7704	0,8434	1,0850	1,0274	0,7559	0,5929
800	1,3696	1,4994	1,9289	1,8264	1,3438	1,0541
1000	2,1399	2,3428	3,0139	2,8538	2,0997	1,6470
1200	3,0815	3,3737	4,3400	4,1095	3,0235	2,3717
1400	4,1943	4,5919	5,9072	5,5935	4,1153	3,2281
1600	5,4782	5,9976	7,7156	7,3058	5,3751	4,2163
1800	6,9334	7,5907	9,7650	9,2463	6,8029	5,3363
qd(veic/h)	0,700.	,,0,0,		90 km/h	0,002	2,5500
200	0,0808	0,1082	0,1230	0,1162	0,0867	0,0704
400	0,3233	0,4326	0,4919	0,4646	0,3467	0,2816
600	0,7274	0,9734	1,1069	1,0454	0,7801	0,6336
800	1,2932	1,7305	1,9678	1,8586	1,3869	1,1264
1000	2,0206	2,7039	3,0746	2,9040	2,1670	1,7600
1200	2,9097	3,8936	4,4275	4,1818	3,1205	2,5344
1400	3,9605	5,2997	6,0263	5,6919	4,2474	3,4496
1600	5,1728	6,9220	7,8711	7,4343	5,5476	4,5056
1800	6,5469	8,7606	9,9619	9,4090	7,0212	5,7024
qd(veic/h)	,	ĺ	$FFS_d =$	100 km/h	,	,
200	0,0792	0,1085	0,1131	0,1130	0,0842	0,0676
400	0,3168	0,4341	0,4523	0,4520	0,3367	0,2704
600	0,7129	0,9768	1,0178	1,0170	0,7576	0,6085
800	1,2674	1,7365	1,8094	1,8079	1,3469	1,0818
1000	1,9803	2,7132	2,8271	2,8249	2,1045	1,6903
1200	2,8516	3,9071	4,0710	4,0678	3,0305	2,4340
1400	3,8814	5,3180	5,5412	5,5368	4,1249	3,3130
1600	5,0696	6,9459	7,2374	7,2317	5,3876	4,3271
1800	6,4162	8,7909	9,1599	9,1526	6,8187	5,4765
q _d (veic/h)			$FFS_d =$	110 km/h		
200	0,0757	0,1071	0,1065	0,1130	0,0775	0,0624
400	0,3026	0,4282	0,4258	0,4522	0,3099	0,2495
600	0,6809	0,9635	0,9581	1,0174	0,6973	0,5614
800	1,2105	1,7129	1,7033	1,8087	1,2396	0,9980
1000	1,8913	2,6763	2,6614	2,8261	1,9369	1,5593
1200	2,7235	3,8539	3,8325	4,0696	2,7892	2,2454
1400	3,7070	5,2456	5,2164	5,5392	3,7964	3,0563
1600	4,8418	6,8514	6,8133	7,2349	4,9585	3,9919
1800	6,1279	8,6713	8,6231	9,1566	6,2756	5,0522



Figura D.16: Fator de ajuste para NPZ - COG 1 - Modelo Quadrático

					Ph	v (%)						
	(	)	1	0	2	0	3	0	4	0	5	0
NPZ	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%
q _d (veic/h)					I	$FS_d = 7$	0km/h					
200	0,0337	0,0071	0,0159	0,000	0,0039	0,000	0,000	0,000	0,000	0,000	0,000	0,000
400	0,1346	0,0283	0,0635	0,000	0,0154	0,000	0,000	0,000	0,000	0,000	0,000	0,000
600	0,3030	0,0637	0,1428	0,000	0,0347	0,000	0,000	0,000	0,000	0,000	0,000	0,000
800	0,5386	0,1133	0,2539	0,000	0,0616	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1000	0,8415	0,1770	0,3968	0,000	0,0963	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1200	1,2118	0,2549	0,5713	0,000	0,1387	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1400	1,6494	0,3469	0,7777	0,000	0,1888	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1600	2,1543	0,4531	1,0157	0,000	0,2465	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1800	2,7266	0,5734	1,2855	0,000	0,3120	0,000	0,000	0,000	0,000	0,000	0,000	0,000
$q_d(veic/h)$						$FFS_d = 8$	0km/h					
200	0,0317	0,0074	0,0094	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
400	0,1269	0,0295	0,0376	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
600	0,2855	0,0663	0,0847	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
800	0,5075	0,1179	0,1505	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1000	0,7930	0,1842	0,2352	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1200	1,1419	0,2652	0,3386	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1400	1,5542	0,3610	0,4609	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1600	2,0300	0,4715	0,6020	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1800	2,5692	0,5967	0,7619	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
$q_d(veic/h)$						$FFS_d = 9$	0km/h					
200	0,0296	0,0069	0,0085	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
400	0,1185	0,0277	0,0340	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
600	0,2665	0,0622	0,0764	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
800	0,4739	0,1106	0,1358	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1000	0,7404	0,1729	0,2122	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1200	1,0662	0,2489	0,3056	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1400	1,4512	0,3388	0,4159	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1600	1,8954	0,4425	0,5432	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1800	2,3989	0,5601	0,6875	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
q _d (veic/h)						$FS_d = 1$						
200	0,0410	0,0069	0,0099	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
400	0,1639	0,0278	0,0396	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
600	0,3687	0,0625	0,0891	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
800	0,6555	0,1111	0,1585	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1000	1,0242	0,1736	0,2476	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1200	1,4748	0,2499	0,3566	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1400	2,0074	0,3402		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1600		0,4443		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1800	3,3183	0,5623	0,8023	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
q _d (veic/h)							10km/h					
200	0,000	0,000	0,0025	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
400	0,000	0,000	0,0100	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
600	0,000	0,000	0,0224	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
800	0,000	0,000	0,0399	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1000	0,000	0,000	0,0623	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1200	0,000	0,000	0,0897	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1400	0,000	0,000	0,1221	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1600	0,000	0,000	0,1595	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1800	0,000	0,000	0,2019	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000



Figura D.17: Fator de ajuste para NPZ - COG 2 - Modelo Quadrático

	Phv (%)											
	<u>(</u>		1			0		30		10		50
NPZ	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%
q _d (veic/h)						$FFS_d = 7$	0km/h					
200	0,0166	0,1790	0,0139	0,1665	0,000	0,1389	0,000	0,1218	0,000	0,1127	0,000	0,1142
400	0,0662	0,7160	0,0556	0,6660	0,000	0,5557	0,000	0,4873	0,000	0,4507	0,000	0,4569
600	0,1490	1,6111	0,1252	1,4985	0,000	1,2504	0,000	1,0964	0,000	1,0140	0,000	1,0281
800	0,2649	2,8642	0,2225	2,6640	0,000	2,2229	0,000	1,9492	0,000	1,8027	0,000	1,8278
1000	0,4139	4,4753	0,3477	4,1624	0,000	3,4732	0,000	3,0457	0,000	2,8167	0,000	2,8559
1200	0,5960	6,4444	0,5007	5,9939	0,000	5,0014	0,000	4,3858	0,000	4,0561	0,000	4,1125
1400	0,8113	8,7715	0,6815	8,1583	0,000	6,8075	0,000	5,9696	0,000	5,5208	0,000	5,5976
1600	1,0596	11,4567	0,8901	10,6558	0,000	8,8914	0,000	7,7970	0,000	7,2108	0,000	7,3112
1800	1,3411	14,4999	1,1265	13,4863	0,000	11,2532	0,000	9,8680	0,000	9,1262	0,000	9,2532
q _d (veic/h)						$FFS_d = 8$	0km/h					
200	0,0160	0,1788	0,0033	0,1555	0,000	0,1321	0,000	0,1235	0,000	0,1121	0,000	0,1008
400	0,0638	0,7153	0,0131	0,6221	0,000	0,5285	0,000	0,4941	0,000	0,4484	0,000	0,4030
600	0,1437	1,6094	0,0295	1,3996	0,000	1,1891	0,000	1,1116	0,000	1,0089	0,000	0,9068
800	0,2554	2,8611	0,0525	2,4883	0,000	2,1140	0,000	1,9763	0,000	1,7936	0,000	1,6120
1000	0,3990	4,4705	0,0820	3,8879	0,000	3,3031	0,000	3,0879	0,000	2,8025	0,000	2,5188
1200	0,5746	6,4376	0,1181	5,5986	0,000	4,7565	0,000	4,4466	0,000	4,0357	0,000	3,6270
1400	0,7821	8,7623	0,1607	7,6203	0,000	6,4741	0,000	6,0523	0,000	5,4930	0,000	4,9368
1600	1,0215	11,4446	0,2099	9,9530	0,000	8,4559	0,000	7,9050	0,000	7,1745	0,000	6,4481
1800	1,2929	14,4845	0,2657	12,5968	0,000	10,7020	0,000	10,0048	0,000	9,0802	0,000	8,1608
$q_d(veic/h)$						$FFS_d = 9$	90km/h					
200	0,0153	0,1703	0,0019	0,1508	0,000	0,1184	0,000	0,1147	0,000	0,1038	0,000	0,0987
400	0,0611	0,6810	0,0077	0,6033	0,000	0,4734	0,000	0,4587	0,000	0,4150	0,000	0,3949
600	0,1375	1,5323	0,0174	1,3575	0,000	1,0652	0,000	1,0320	0,000	0,9338	0,000	0,8885
800	0,2445	2,7241	0,0309	2,4133	0,000	1,8938	0,000	1,8347	0,000	1,6601	0,000	1,5795
1000	0,3820	4,2565	0,0483	3,7708	0,000	2,9590	0,000	2,8667	0,000	2,5939	0,000	2,4680
1200	0,5501	6,1293	0,0696	5,4300	0,000	4,2609	0,000	4,1281	0,000	3,7353	0,000	3,5539
1400	0,7488	8,3427	0,0947	7,3908	0,000	5,7996	0,000	5,6188	0,000	5,0841	0,000	4,8372
1600	0,9780	10,8966	0,1237	9,6533	0,000	7,5750	0,000	7,3388	0,000	6,6405	0,000	6,3180
1800	1,2377	13,7910	0,1566	12,2174	0,000	9,5871	0,000	9,2882	0,000	8,4043	0,000	7,9963
$q_d(veic/h)$						$FFS_d = 1$	00km/h					
200	0,0219	0,1713	0,0054	0,1511	0,000	0,1206	0,000	0,1105	0,000	0,0981	0,000	0,0932
400	0,0875	0,6852	0,0215	0,6046	0,000	0,4824	0,000	0,4419	0,000	0,3925	0,000	0,3726
600	0,1968	1,5417	0,0483	1,3603	0,000	1,0855	0,000	0,9944	0,000	0,8831	0,000	0,8384
800	0,3499	2,7408	0,0858	2,4183	0,000	1,9297	0,000	1,7677	0,000	1,5700	0,000	1,4905
1000	0,5468	4,2825	0,1341	3,7785	0,000	3,0152	0,000	2,7621	0,000	2,4531	0,000	2,3288
1200	0,7873	6,1668	0,1931	5,4411	0,000	4,3418	0,000	3,9774	0,000	3,5325	0,000	3,3535
1400	1,0717	8,3936	0,2628	7,4059	0,000	5,9097	0,000	5,4137	0,000	4,8082	0,000	4,5645
1600	1,3997	10,9631	0,3432	9,6730	0,000	7,7188	0,000	7,0709	0,000	6,2801	0,000	5,9618
1800	1,7715	13,8752	0,4344	12,2424	0,000	9,7691	0,000	8,9492	0,000	7,9482	0,000	7,5454
q _d (veic/h)						$FFS_d = 1$	10km/h					
200	0,0107	0,1648	0,000	0,1427	0,000	0,1190	0,000	0,1132	0,000	0,1013	0,000	0,0969
400	0,0429	0,6592	0,000	0,5708	0,000	0,4759	0,000	0,4528	0,000	0,4052	0,000	0,3877
600	0,0965	1,4833	0,000	1,2844	0,000	1,0707	0,000	1,0188	0,000	0,9118	0,000	0,8723
800	0,1716	2,6369	0,000	2,2833	0,000	1,9035	0,000	1,8113	0,000	1,6210	0,000	1,5508
		4,1202	0,000	3,5677	0,000	2,9743	0,000	2,8301	0,000	2,5327	0,000	2,4231
1000	0,2681	4,1202	0,000									



1400	0,5254	8,0756	0,000	6,9927	0,000	5,8296	0,000	5,5470	0,000	4,9642	0,000	4,7493
1600	0,6862	10,5478	0,000	9,1333	0,000	7,6141	0,000	7,2451	0,000	6,4838	0,000	6,2032
1800	0.8685	13.3495	0.000	11.5593	0.000	9.6366	0.000	9.1696	0.000	8.2061	0.000	7.8509



Figura D.18: Fator de ajuste para NPZ - COG 3 – Modelo Quadrático

		_				nv (%)						
		0		10		20		30		40		50
NPZ	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%	6 50%	100%
q _d (veic/h)						$FFS_d =$	70km/h					
200	0,0126	0,1652	0,0151	0,1588	0,0087	0,1381	0,005	6 0,0957	0,004	5 0,122	0,000	0,1050
400	0,0504	0,6609	0,0603	0,6350	0,0349	0,5525	0,022	5 0,3830	0,017	8 0,488	0,000	0,4202
600	0,1134	1,4869	0,1356	1,4288	0,0785	1,2431	0,050	6 0,8617	0,040	1 1,098	1 0,000	0,9454
800	0,2015	2,6434	0,2411	2,5401	0,1396	2,2099	0,089	9 1,5319	0,071	3 1,952	2 0,000	1,6807
1000	0,3149	4,1303	0,3767	3,9690	0,2181	3,4530	0,140	5 2,3936	0,111	4 3,050	3 0,000	2,6261
1200	0,4534	5,9477	0,5424	5,7153	0,3141	4,9724	0,202	3 3,4469	0,160	4 4,392	4 0,000	3,7816
1400	0,6172	8,0954	0,7383	7,7792	0,4275	6,7679	0,275	4 4,6915	0,218	3 5,978	6 0,000	5,1471
1600	0,8061	10,5736	0,9643	10,1606	0,5583	8,8397	0,359	7 6,1277	0,285	1 7,808	8 0,000	6,7228
1800	1,0203	13,3823	1,2204	12,8595	0,7066	11,1878	0,455	3 7,7554	0,360	9 9,883	0,000	8,5085
q _d (veic/h)						$FFS_d =$	80km/h					
200	0,0147	0,1865	0,0121	0,1496	0,0092	0,1288	0,001	0,1007	0,002	6 0,113	5 0,000	0,0884
400	0,0590	0,7460	0,0486	0,5983	0,0366	0,5151	0,004	2 0,4026	0,010	4 0,454	1 0,000	0,3535
600	0,1326	1,6784	0,1093	1,3462	0,0824	1,1589	0,009	4 0,9060	0,023	4 1,021	7 0,000	0,7953
800	0,2358	2,9838	0,1943	2,3933	0,1464	2,0603	0,016	7 1,6106	0,041	6 1,816	4 0,000	1,4138
1000	0,3684	4,6622	0,3035	3,7395	0,2288	3,2192	0,026	2,5165	0,065	0 2,838	1 0,000	2,2091
1200	0,5306	6,7136	0,4371	5,3849	0,3295	4,6357	0,037	7 3,6238	0,093	6 4,086	8 0,000	3,1811
1400	0,7221	9,1379	0,5949	7,3294	0,4485	6,3097	0,051	3 4,9324	0,127	4 5,562	6 0,000	4,3298
1600	0,9432	11,9352	0,7770	9,5731	0,5858	8,2412	0,0670	0 6,4423	0,166	4 7,265	5 0,000	5,6552
1800	1,1937	15,1055	0,9834	12,1160	0,7414	10,4303	0,084	8 8,1536	0,210	6 9,195	3 0,000	7,1574
q _d (veic/h)						$FFS_d =$	90km/h					
200	0,0135	0,1760	0,0089	0,1414	0,000	0,1180	0,000	0,0931	0,000	0,104	2 0,000	0,0870
400	0,0539	0,7041	0,0358	0,5656	0,000	0,4721	0,000		0,000	0,416	9 0,000	0,3478
600	0,1213	1,5842	0,0805	1,2725	0,000	1,0622	0,000	0,8376	0,000	0,938	1 0,000	0,7826
800	0,2156	2,8164	0,1430	2,2622	0,000	1,8884	0,000	1,4891	0,000	1,667	7 0,000	1,3913
1000	0,3368	4,4006	0,2235	3,5347	0,000	2,9506	0,000	2,3267	0,000	2,605	8 0,000	2,1739
1200	0,4850	6,3369	0,3218	5,0900	0,000	4,2489	0,000	3,3504	0,000	3,752	4 0,000	3,1304
1400	0,6601	8,6252	0,4380	6,9281	0,000	5,7833	0,000	4,5603	0,000	5,107	4 0,000	4,2608
1600	0,8622	11,2655	0,5721	9,0489	0,000	7,5536	0,000	5,9563	0,000	6,670	9 0,000	5,5651
1800	1,0913	14,2579	0,7241	11,4525	0,000	9,5601	0,000	7,5384	0,000	8,442	9 0,000	7,0434
q _d (veic/h)						$FFS_d = 1$	100km/h	!				
200	0,0227	0,1731	0,0101	0,1442	0,000	0,1169	0,000	0,0915	0,000	0,097	4 0,000	0,0842
400	0,0906	0,6922	0,0404	0,5768	0,000	0,4677		,				0,3368
600	0,2039	1,5575	0,0910	1,2977	0,000	1,0523	0,000		0,000			0,7577
800	0,3625	2,7688	0,1618	2,3071	0,000	1,8708	0,000		0,000			1,3470
1000	0,5665	4,3263	0,2527	3,6048	0,000	2,9231	0,000		0,000			2,1047
1200	0,8157	6,2298	0,3639	5,1909	0,000	4,2093	0,000		0,000			3,0308
1400	1,1103	8,4795	0,4954	7,0654	0,000	5,7293	0,000		0,000			4,1253
1600	1,4502	11,0753	0,6470	9,2282	0,000	7,4832	0,000		0,000			5,3881
1800	1,8353	14,0171	0,8189	11,6795	0,000	9,4709	0,000		0,000			6,8194
q _d (veic/h)	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,-,		$FFS_d = 11$		.,,	.,	,		
200	0,0164	0,1688	0,0018	0,1311	0,000	0,1153	0,000	0,0945	0,000	0,1000	0,000	0,0861
400	0,0657	0,6753	0,0074	0,5244	0,000	0,4610	0,000		0,000	0,3998	0,000	0,3443
600	0,1478	1,5194	0,0166	1,1799	0,000	1,0373	0,000	0,8505	0,000	0,8996	0,000	0,7747
800	0,2628	2,7011	0,0295	2,0976	0,000	1,8441	0,000		0,000	1,5992	0,000	1,3773
1000	0,4107	4,2205	0,0460	3,2775	0,000	2,8814	0,000		0,000	2,4988	0,000	2,1520
1200	0,5914	6,0775	0,0663	4,7196	0,000	4,1491	0,000		0,000	3,5982	0,000	3,0989
1400	0,8049	8,2722	0,0902	6,4239	0,000	5,6475	0,000	4,6303	0,000	4,8976	0,000	4,2179



 1600
 1,0513
 10,8045
 0,1179
 8,3904
 0,000
 7,3763
 0,000
 6,0478
 0,000
 6,3968
 0,000
 5,5091

 1800
 1,3306
 13,6745
 0,1492
 10,6191
 0,000
 9,3356
 0,000
 7,6542
 0,000
 8,0960
 0,000
 6,9724



Figura D.19: Fator de ajuste para NPZ - COG 4 – Modelo Quadrático

					<u>P</u> h	v (%)						
	(	)							4	10	50	
NPZ	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%
q _d (veic/h)						$FFS_d =$	70km/h					
200	0,0703	0,1397	0,0503	0,1195	0,0315	0,0717	0,0174	0,0579	0,0108	0,0396	0,0101	0,0490
400	0,2811	0,5589	0,2013	0,4782	0,1259	0,2870	0,0696	0,2317	0,0431	0,1582	0,0404	0,1959
600	0,6325	1,2576	0,4530	1,0759	0,2833	0,6457	0,1566	0,5213	0,0969	0,3560	0,0910	0,4409
800	1,1245	2,2357	0,8053	1,9128	0,5036	1,1480	0,2784	0,9268	0,1723	0,6329	0,1618	0,7838
1000	1,7571	3,4934	1,2582	2,9887	0,7869	1,7937	0,4349	1,4481	0,2692	0,9889	0,2528	1,2247
1200	2,5302	5,0304	1,8118	4,3038	1,1332	2,5830	0,6263	2,0853	0,3877	1,4240	0,3640	1,7635
1400	3,4439	6,8470	2,4661	5,8579	1,5424	3,5157	0,8525	2,8383	0,5277	1,9382	0,4955	2,4003
1600	4,4981	8,9430	3,2210	7,6512	2,0146	4,5920	1,1134	3,7071	0,6892	2,5315	0,6472	3,1351
1800	5,6929	11,3185	4,0766	9,6835	2,5497	5,8117	1,4092	4,6918	0,8723	3,2039	0,8191	3,9679
q _d (veic/h)						$FFS_d =$	80km/h					
200	0,0733	0,1354	0,0457	0,1091	0,0226	0,0585	0,0158	0,0521	0,0105	0,0347	0,0043	0,0395
400	0,2932	0,5415	0,1827	0,4363	0,0904	0,2338	0,0631	0,2083	0,0422	0,1388	0,0174	0,1582
600	0,6597	1,2185	0,4111	0,9816	0,2035	0,5262	0,1421	0,4687	0,0949	0,3124	0,0391	0,3559
800	1,1729	2,1661	0,7308	1,7451	0,3617	0,9354	0,2525	0,8333	0,1686	0,5553	0,0695	0,6327
1000	1,8326	3,3846	1,1419	2,7268	0,5652	1,4616	0,3946	1,3020	0,2635	0,8677	0,1086	0,9886
1200	2,6390	4,8738	1,6443	3,9266	0,8139	2,1046	0,5682	1,8749	0,3795	1,2495	0,1564	1,4236
1400	3,5919	6,6338	2,2381	5,3445	1,1078	2,8647	0,7734	2,5520	0,5165	1,7007	0,2129	1,9377
1600	4,6915	8,6646	2,9232	6,9805	1,4469	3,7416	1,0102	3,3332	0,6746	2,2213	0,2781	2,5309
1800	5,9377	10,9661	3,6997	8,8348	1,8312	4,7355	1,2785	4,2186	0,8538	2,8113	0,3519	3,2031
q _d (veic/h)						$FFS_d =$	90km/h					
200	0,0662	0,1282	0,0386	0,000	0,0152	0,0463	0,0085	0,0420	0,0006	0,0214	0,0025	0,0286
400	0,2649	0,5129	0,1546	0,000	0,0608	0,1853	0,0338	0,1682	0,0025	0,0857	0,0099	0,1145
600	0,5960	1,1541	0,3478	0,000	0,1368	0,4169	0,0761	0,3784	0,0055	0,1929	0,0224	0,2576
800	1,0595	2,0518	0,6182	0,000	0,2431	0,7412	0,1353	0,6727	0,0098	0,3430	0,0398	0,4579
1000	1,6554	3,2059	0,9660	0,000	0,3799	1,1582	0,2114	1,0511	0,0154	0,5359	0,0622	0,7155
1200	2,3838	4,6165	1,3910	0,000	0,5471	1,6678	0,3044	1,5136	0,0222	0,7717	0,0895	1,0303
1400	3,2447	6,2836	1,8933	0,000	0,7446	2,2701	0,4143	2,0602	0,0302	1,0503	0,1219	1,4024
1600	4,2379	8,2072	2,4729	0,000	0,9726	2,9650	0,5411	2,6909	0,0394	1,3719	0,1592	1,8317
1800	5,3636	10,3872	3,1298	0,000	1,2309	3,7525	0,6848	3,4057	0,0499	1,7363	0,2015	2,3183
q _d (veic/h)						$FFS_d =$	100km/h					
200	0,0845	0,1230	0,0353	0,0899	0,0149	0,0489	0,0101	0,0444	0,0011	0,0211	-0,0035	0,0163
400	0,3379	0,4918	0,1412	0,3597	0,0595	0,1955	0,0402	0,1778	0,0042	0,0843	-0,0142	0,0652
600	0,7603	1,1066	0,3178	0,8093	0,1339	0,4399	0,0905	0,4000	0,0095	0,1896	-0,0318	0,1466
800	1,3517	1,9673	0,5649	1,4387	0,2380	0,7820	0,1609	0,7112	0,0168	0,3371	-0,0566	0,2606
1000	2,1120	3,0740	0,8826	2,2480	0,3718	1,2218	0,2514	1,1112	0,0263	0,5267	-0,0884	0,4072
1200	3,0412	4,4265	1,2710	3,2371	0,5354	1,7594	0,3621	1,6002	0,0378	0,7584	-0,1274	0,5864
1400	4,1395	6,0250	1,7300	4,4061	0,7288	2,3948	0,4928	2,1780	0,0515	1,0323	-0,1734	0,7982
1600	5,4066	7,8694	2,2596	5,7549	0,9519	3,1279	0,6437	2,8448	0,0673	1,3483	-0,2264	1,0425
1800	6,8428	9,9596	2,8598	7,2836	1,2047	3,9587	0,8147	3,6004	0,0851	1,7064	-0,2866	1,3195
q _d (veic/h)						$FFS_d =$	110km/h					
200	0,0627	0,1179	0,0265	0,0795	0,0165	0,0502	0,0100	0,0438	0,0000	0,0222	0,0012	0,0201
400	0,2509	0,4715	0,1058	0,3179	0,0662	0,2007	0,0398	0,1750	0,0001	0,0886	0,0047	0,0805
600	0,5644	1,0610	0,2381	0,7153	0,1489	0,4516	0,0896	0,3939	0,0002	0,1994	0,0105	0,1812
800	1,0034	1,8862	0,4233	1,2716	0,2647	0,8029	0,1593	0,7002	0,0003	0,3545	0,0187	0,3222
1000	1,5678	2,9471	0,6614	1,9869	0,4136	1,2545	0,2489	1,0940	0,0004	0,5539	0,0293	0,5034
1200	2,2577	4,2439	0,9524	2,8612	0,5956	1,8065	0,3585	1,5754	0,0006	0,7977	0,0421	0,7249
1400	3,0730	5,7764	1,2963	3,8944	0,8107	2,4589	0,4879	2,1443	0,0009	1,0857	0,0573	0,9867
1600	4,0137	7,5447	1,6931	5,0866	1,0588	3,2116	0,6373	2,8007	0,0011	1,4181	0,0749	1,2888



1800 5,0798 9,5488 2,1428 6,4377 1,3401 4,0646 0,8065 3,5447 0,0014 1,7948 0,0948 1,6311



Figura D.20: Fator de ajuste para NPZ - COG 5 – Modelo Quadrático

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							hv (%)	P					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50			4	0	3			0	1	0		
200	% 100%	50%	100%	50%	100%	50%	100%	50%	100%	50%	100%	50%	NPZ
A00						70km/h	$FFS_d =$						$q_d(veic/h)$
Mathematical Notation   Math	0 0,0322	0,000	0,0395	0,000	0,0492	0,000	0,0671	0,000	0,1135	0,0230	0,1237	0,0316	200
Note	00 0,1287	0,000	0,1579	0,000	0,1967	0,000	0,2682	0,000	0,4540	0,0921	0,4949	0,1265	400
1000	0,2895	0,000	0,3552	0,000	0,4426	0,000	0,6035	0,000	1,0214	0,2073	1,1136	0,2847	600
1200         1,1389         4,4545         0,8293         4,0856         0,000         2,4139         0,000         1,7705         0,000         1,4208         0,000           1400         1,5501         6,0631         1,1287         5,5609         0,000         3,2856         0,000         2,4099         0,000         1,9338         0,000           1800         2,5625         1,0227         1,8688         9,1925         0,000         5,4313         0,000         3,1476         0,000         2,5258         0,000           400         0,1347         0,9377         0,1046         0,000         0,2551         0,000         0,0443         0,000         0,021         0,000           600         0,3346         1,1220         0,1574         0,9588         0,000         0,4955         0,000         0,773         0,000         0,2888         0,000           1000         0,5949         1,9947         0,2798         1,7062         0,000         0,8809         0,000         0,7990         0,000         0,5134         0,000           1200         1,3385         4,4882         0,6295         3,8390         0,000         2,6979         0,000         1,5153         0,000	00 0,5148	0,000	0,6315	0,000	0,7869	0,000	1,0729	0,000	1,8158	0,3686	1,9798	0,5062	800
1400         1,5501         6,0631         1,1287         5,5609         0,000         3,2856         0,000         2,4099         0,000         1,9338         0,000           1800         2,0247         7,9192         1,4742         7,2632         0,000         4,2914         0,000         3,1476         0,000         2,5258         0,000 $qu(veich)$ $vertheth$ $vertheth$ $vertheth$ $vertheth$ $vertheth$ 200         0,0372         0,1247         0,0175         0,1066         0,000         0,0551         0,000         0,0443         0,000         0,0321         0,000           600         0,3346         1,1220         0,1574         0,9598         0,000         0,4955         0,000         0,090         0,000         0,2888         0,000           800         0,5949         1,9947         0,2798         1,000         0,3888         0,000         0,3888         0,000         0,3888         0,000         0,3881         1,9404         0,2798         3,1168         0,4371         2,6660         0,000         1,9400         1,553         0,000         0,8121         0,000           1400         1,3385         4,4882         0,6	00 0,8043	0,000	0,9866	0,000	1,2295	0,000	1,6763	0,000	2,8372	0,5759	3,0934	0,7909	
1600         2,0247         7,9192         1,4742         7,2632         0,000         4,2914         0,000         3,1476         0,000         2,5258         0,000           q(veic/h)         FSG         1,00227         1,8658         9,1925         0,000         5,4313         0,000         3,9836         0,000         3,1967         0,000           q(veic/h)         FSG         FSG         FSG         No           200         0,0372         0,1247         0,0059         0,006         0,0222         0,000         0,1733         0,000         0,1283         0,000           800         0,5949         1,9947         0,2798         1,7062         0,000         0,8809         0,000         1,0709         0,000         0,5945         0,000         0,000         1,000         1,5933         0,000         0,5949         1,9947         0,2798         3,390         0,000         1,8809         0,000         0,000         1,9821         0,000         1,5953         0,000         0,5134         0,000           1400         1,8218         6,1089         8,568         5,2254         0,000         3,5238         0,000         2,8361         0,000	00 1,1582	0,000	1,4208	0,000	1,7705	0,000	2,4139	0,000	4,0856	0,8293	4,4545	1,1389	
1800         2,5625         10,0227         1,8658         9,1925         0,000         5,4313         0,000         3,9836         0,000         3,1967         0,000           qu(veic/h)         FFS = 8/km/h           200         0,0372         0,1247         0,0175         0,1066         0,000         0,0551         0,000         0,0443         0,000         0,0321         0,000           400         0,1487         0,4987         0,0699         0,4266         0,000         0,4955         0,000         0,3988         0,000         0,2888         0,000           800         0,9949         1,9947         0,2798         1,7062         0,000         1,8365         0,000         0,5934         0,000         0,5134         0,000           1000         0,9295         3,1168         0,4371         2,6660         0,000         1,8211         0,000         1,5151         0,000           1400         1,3385         4,4882         0,6295         3,8390         0,000         1,9821         0,000         1,5151         0,000           1400         2,3118         6,1089         0,8568         2,2254         0,000         3,5238         0,00         2,8361         0,00	00 1,5764	0,000	1,9338	0,000	2,4099	0,000	3,2856	0,000	5,5609	1,1287	6,0631	1,5501	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	00 2,0590	0,000	2,5258	0,000	3,1476	0,000	4,2914	0,000	7,2632	1,4742	7,9192	2,0247	
200	00 2,6059	0,000	3,1967	0,000	3,9836	0,000	5,4313	0,000	9,1925	1,8658	10,0227	2,5625	1800
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						80km/h	$FFS_d =$						q _d (veic/h)
	0,0273	0,000	0,0321	0,000	0,0443	0,000	0,0551	0,000	0,1066	0,0175	0,1247	0,0372	200
Note	0,1094	0,000	0,1283	0,000	0,1773	0,000	0,2202	0,000	0,4266	0,0699	0,4987	0,1487	400
1000         0,9295         3,1168         0,4371         2,6660         0,000         1,3765         0,000         1,1078         0,000         0,8021         0,000           1200         1,3385         4,4882         0,6295         3,8390         0,000         1,9821         0,000         1,5953         0,000         1,1551         0,000           1400         1,8218         6,1089         0,8568         5,2254         0,000         2,6979         0,000         2,1714         0,000         1,5722         0,000           1800         3,0116         10,0984         1,4164         8,6378         0,000         4,4598         0,000         2,8361         0,000         2,5989         0,000 $q_{\ell}(veic/h)$ $r$ <td>00 0,2461</td> <td>0,000</td> <td>0,2888</td> <td>0,000</td> <td>0,3988</td> <td>0,000</td> <td>0,4955</td> <td>0,000</td> <td>0,9598</td> <td>0,1574</td> <td>1,1220</td> <td>0,3346</td> <td>600</td>	00 0,2461	0,000	0,2888	0,000	0,3988	0,000	0,4955	0,000	0,9598	0,1574	1,1220	0,3346	600
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	00 0,4374	0,000	0,5134	0,000	0,7090	0,000	0,8809	0,000	1,7062	0,2798	1,9947	0,5949	
1400         1,8218         6,1089         0,8568         5,2254         0,000         2,6979         0,000         2,1714         0,000         1,5722         0,000           1800         2,3795         7,9790         1,1191         6,8250         0,000         3,5238         0,000         2,8361         0,000         2,0534         0,000           qu(veic/h)         FFS4 = $\sqrt{\frac{1}{2}}$ 200         0,0352         0,1206         0,0058         0,0919         0,000         0,0555         0,000         0,0415         0,000         0,2288         0,000           400         0,1409         0,4822         0,0231         0,3678         0,000         0,2518         0,000         0,01661         0,000         0,1533         0,000         0,0150         0,000         0,1661         0,000         0,1538         0,000         0,0153         0,000         0,0161         0,000         0,0163         0,000         0,0163         0,000         0,0163         0,000         0,0163         0,000         0,0153         0,000         0,0163         0,000         0,0163         0,000         0,0153         0,000         0,0153         0,000         0,0213         0,000         0,0213         0,000	00 0,6835	0,000	0,8021	0,000	1,1078	0,000	1,3765	0,000	2,6660	0,4371	3,1168	0,9295	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00 0,9842	0,000	1,1551	0,000		0,000	1,9821	0,000	3,8390	0,6295	4,4882	1,3385	
1800         3,0116         10,0984         1,4164         8,6378         0,000         4,4598         0,000         3,5894         0,000         2,5899         0,000           qu(veic/h)         FFSd = 90km/h           200         0,0352         0,1206         0,0058         0,0919         0,000         0,0505         0,000         0,0145         0,000         0,0288         0,000           600         0,3171         1,0850         0,0520         0,8275         0,000         0,4548         0,000         0,6646         0,000         0,2595         0,000           800         0,5638         1,9289         0,0924         1,4710         0,000         0,8086         0,000         0,6646         0,000         0,4613         0,000           1200         1,2685         4,3399         0,2078         3,399         0,000         1,8193         0,000         1,4953         0,000         1,4128         0,000           1400         1,7266         5,9071         0,2829         4,5051         0,000         2,4763         0,000         2,6353         0,000         1,4128         0,000           1600         2,8541         9,7648         0,4676         7,4472         0,000	00 1,3397	0,000	1,5722	0,000	2,1714	0,000	2,6979	0,000	5,2254	0,8568	6,1089	1,8218	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	00 1,7498	0,000	2,0534	0,000	2,8361	0,000	3,5238	0,000	6,8250	1,1191	7,9790	2,3795	
200         0,0352         0,1206         0,0058         0,0919         0,000         0,0505         0,000         0,0415         0,000         0,0288         0,000           400         0,1409         0,4822         0,0231         0,3678         0,000         0,2021         0,000         0,1661         0,000         0,1153         0,000           600         0,3171         1,0850         0,0520         0,8275         0,000         0,4548         0,000         0,3738         0,000         0,2595         0,000           800         0,5638         1,9289         0,0924         1,4710         0,000         0,8086         0,000         0,6646         0,000         0,4613         0,000           1000         0,8809         3,0138         0,1443         2,2985         0,000         1,2634         0,000         1,4953         0,000         1,2685         4,3399         0,2078         3,3099         0,000         1,8193         0,000         1,4953         0,000         1,2685         0,000         1,4128         0,000           1400         1,7266         5,9071         0,2829         4,5051         0,000         3,2344         0,000         2,6583         0,000         1,4128         0,0	00 2,2145	0,000	2,5989	0,000	3,5894	0,000	4,4598	0,000	8,6378	1,4164	10,0984	3,0116	1800
400         0,1409         0,4822         0,0231         0,3678         0,000         0,2021         0,000         0,1661         0,000         0,1153         0,000           600         0,3171         1,0850         0,0520         0,8275         0,000         0,4548         0,000         0,3738         0,000         0,2595         0,000           800         0,5638         1,9289         0,0924         1,4710         0,000         0,8886         0,000         0,6646         0,000         0,4613         0,000           1200         1,2685         4,3399         0,2078         3,3099         0,000         1,8193         0,000         1,4953         0,000         1,0384         0,000         1,0380         0,000           1400         1,7266         5,9071         0,2829         4,5051         0,000         2,4763         0,000         2,6583         0,000         1,4128         0,000           1600         2,2551         7,7154         0,3694         5,8842         0,000         3,2344         0,000         2,6583         0,000         1,4128         0,000           400         0,2130         0,4597         0,0153         0,3440         0,000         0,4999         0,000 <td></td> <td></td> <td></td> <td></td> <td></td> <td>90km/h</td> <td>$FFS_d =$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>q_d(veic/h)</td>						90km/h	$FFS_d =$						q _d (veic/h)
600         0,3171         1,0850         0,0520         0,8275         0,000         0,4548         0,000         0,3738         0,000         0,2595         0,000           800         0,5638         1,9289         0,0924         1,4710         0,000         0,8806         0,000         0,6646         0,000         0,4613         0,000           1000         0,8809         3,0138         0,1443         2,2985         0,000         1,2634         0,000         1,0384         0,000         0,7208         0,000           1200         1,2685         4,3399         0,2078         3,3099         0,000         1,8193         0,000         1,4953         0,000         1,0380         0,000           1400         1,7266         5,9071         0,2829         4,5051         0,000         2,4763         0,000         2,6583         0,000         1,4128         0,000           1600         2,2551         7,7154         0,3694         5,8842         0,000         3,2344         0,000         2,6583         0,000         1,8453         0,000           400         0,533         0,1149         0,0388         0,0851         0,000         0,0499         0,000         0,0376         0,000 <td>0,0188</td> <td>0,000</td> <td>0,0288</td> <td>0,000</td> <td>0,0415</td> <td>0,000</td> <td>0,0505</td> <td>0,000</td> <td>0,0919</td> <td>0,0058</td> <td>0,1206</td> <td>0,0352</td> <td>200</td>	0,0188	0,000	0,0288	0,000	0,0415	0,000	0,0505	0,000	0,0919	0,0058	0,1206	0,0352	200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0753	0,000	0,1153	0,000	0,1661	0,000	0,2021	0,000	0,3678	0,0231	0,4822	0,1409	400
1000	0,1694	0,000	0,2595	0,000	0,3738	0,000	0,4548	0,000	0,8275	0,0520	1,0850	0,3171	600
1200	00 0,3012	0,000	0,4613	0,000	0,6646	0,000	0,8086	0,000	1,4710	0,0924	1,9289	0,5638	
1400         1,7266         5,9071         0,2829         4,5051         0,000         2,4763         0,000         2,0353         0,000         1,4128         0,000           1600         2,2551         7,7154         0,3694         5,8842         0,000         3,2344         0,000         2,6583         0,000         1,8453         0,000           4800         2,8541         9,7648         0,4676         7,4472         0,000         4,0935         0,000         3,3644         0,000         2,3355         0,000           4a(veic/h)         FFSa = 100km/h           200         0,0533         0,1149         0,0038         0,0851         0,000         0,0499         0,000         0,0376         0,000         0,0257         0,000           400         0,2130         0,4597         0,0153         0,3404         0,000         0,1994         0,000         0,1505         0,000         0,1029         0,000           600         0,4793         1,0342         0,0345         0,7658         0,000         0,4487         0,000         0,3386         0,000         0,2314         0,000           1000         1,3314         2,8728         0,0958         2,1272	00 0,4707	0,000	0,7208	0,000	1,0384	0,000	1,2634	0,000	2,2985	0,1443	3,0138	0,8809	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 0,6778	0,000	1,0380	0,000	1,4953	0,000	1,8193	0,000	3,3099	0,2078	4,3399	1,2685	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0,9225	0,000	1,4128	0,000	2,0353	0,000	2,4763	0,000	4,5051	0,2829	5,9071	1,7266	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 1,2049	0,000	1,8453	0,000	2,6583	0,000	3,2344	0,000	5,8842	0,3694	7,7154	2,2551	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 1,5250	0,000	2,3355	0,000				0,000	7,4472	0,4676	9,7648	2,8541	1800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						100km/h	$FFS_d = 1$						q _d (veic/h)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0134	0,000	0,0257	0,000	0,0376	0,000	0,0499	0,000	0,0851	0,0038	0,1149	0,0533	200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0534	0,000	0,1029	0,000	0,1505	0,000	0,1994	0,000	0,3404	0,0153	0,4597	0,2130	400
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 0,1203	0,000	0,2314	0,000	0,3386	0,000	0,4487	0,000	0,7658	0,0345	1,0342	0,4793	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0,2138	0,000	0,4114	0,000	0,6020	0,000	0,7976	0,000	1,3614	0,0613	1,8386	0,8521	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 0,3341	0,000	0,6429	0,000	0,9406	0,000	1,2463	0,000	2,1272	0,0958	2,8728	1,3314	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 0,4810	0,000	0,9257	0,000	1,3545	0,000	1,7947	0,000	3,0632	0,1379	4,1369	1,9172	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,6547	0,000	1,2600	0,000	1,8436	0,000	2,4428	0,000	4,1693	0,1878	5,6308	2,6096	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 0,8552	0,000	1,6457	0,000	2,4079	0,000	3,1906	0,000	5,4456	0,2452	7,3545	3,4084	
200 0,0365 0,1079 0,0040 0,0865 0,000 0,0524 0,000 0,0385 0,000 0,0290 0,000 400 0,1461 0,4316 0,0160 0,3458 0,000 0,2095 0,000 0,1540 0,000 0,1158 0,000 600 0,3287 0,9711 0,0360 0,7781 0,000 0,4713 0,000 0,3465 0,000 0,2606 0,000	00 1,0823	0,000	2,0829	0,000	3,0475	0,000	4,0381	0,000	6,8921	0,3104	9,3080	4,3137	1800
400 0,1461 0,4316 0,0160 0,3458 0,000 0,2095 0,000 0,1540 0,000 0,1158 0,000 600 0,3287 0,9711 0,0360 0,7781 0,000 0,4713 0,000 0,3465 0,000 0,2606 0,000					!	110km/h	$FFS_d =$						q _d (veic/h)
600 0,3287 0,9711 0,0360 0,7781 0,000 0,4713 0,000 0,3465 0,000 0,2606 0,000	00 0,0167	0,000	0,0290	0,000	0,0385	0,000	0,0524	0,000	0,0865	0,0040	0,1079	0,0365	
	0,0667	0,000	0,1158	0,000	0,1540	0,000	0,2095	0,000	0,3458	0,0160	0,4316	0,1461	
	00 0,1501	0,000	0,2606	0,000	0,3465	0,000	0,4713	0,000	0,7781	0,0360	0,9711	0,3287	
	00 0,2669	0,000	0,4633	0,000	0,6161	0,000	0,8379	0,000	1,3833	0,0639	1,7264	0,5844	800
1000 0,9131 2,6975 0,0999 2,1614 0,000 1,3092 0,000 0,9626 0,000 0,7239 0,000	00 0,4171	0,000	0,7239	0,000	0,9626	0,000	1,3092	0,000	2,1614	0,0999	2,6975	0,9131	
1200 1,3148 3,8844 0,1439 3,1125 0,000 1,8852 0,000 1,3861 0,000 1,0424 0,000	0,6006	0,000	1,0424	0,000	1,3861	0,000	1,8852	0,000	3,1125	0,1439	3,8844	1,3148	
1400 1,7896 5,2871 0,1958 4,2364 0,000 2,5660 0,000 1,8867 0,000 1,4188 0,000	00 0,8175	0,000	1,4188	0,000	1,8867	0,000	2,5660	0,000	4,2364	0,1958	5,2871	1,7896	
1600 2,3375 6,9056 0,2558 5,5332 0,000 3,3515 0,000 2,4642 0,000 1,8531 0,000	00 1,0677	0,000	1,8531	0,000	2,4642	0,000	3,3515	0,000	5,5332	0,2558	6,9056	2,3375	1600



1800 2,9584 8,7398 0,3237 7,0030 0,000 4,2417 0,000 3,1188 0,000 2,3453 0,000 1,3513



## **APÊNDICE E**

Nesse Apêndice são apresentados os resultados da  $FD_d$  para cada COG dos Modelos Base Linear e Quadrático. AS Tabelas E.1 a E.5 apresentam o  $FD_d$  para o Modelo Linear. As Tabelas E.6 a E.10 são referentes ao Modelo Quadrático.

Tabela E.1: Densidade de Veículos em Pelotão direcional - COG 1, Modelo Linear

		Phv	(%)			
	0	10	20	30	40	50
$q_d(veic/h)$			FFSd =	70km/h		
200	2,4	2,6	2,6	2,7	2,5	2,5
400	4,7	5,1	5,1	5,3	5,0	5,0
600	7,1	7,7	7,7	8,0	7,5	7,4
800	9,4	10,2	10,3	10,7	10,1	9,9
1000	11,8	12,8	12,9	13,4	12,6	12,4
1400	16,5	17,9	18,0	18,7	17,6	17,4
1600	18,8	20,5	20,6	21,4	20,1	19,8
1800	21,2	23,0	23,2	24,1	22,6	22,3
q _d (veic/h)			$FFS_d =$	80 km/h		
200	2,2	2,5	2,5	2,6	2,4	2,5
400	4,4	4,9	4,9	5,1	4,8	5,0
600	6,7	7,4	7,4	7,7	7,2	7,4
800	8,9	9,8	9,8	10,2	9,7	9,9
1000	11,1	12,3	12,3	12,8	12,1	12,4
1400	15,6	17,2	17,2	17,9	16,9	17,4
1600	17,8	19,6	19,7	20,5	19,3	19,8
1800	20,0	22,1	22,1	23,0	21,7	22,3
q _d (veic/h)			FFSd =	90 km/h		
200	2,1	2,3	2,4	2,5	2,4	2,5
400	4,2	4,7	4,8	5,0	4,7	5,0
600	6,3	7,0	7,2	7,6	7,1	7,4
800	8,5	9,4	9,7	10,1	9,4	9,9
1000	10,6	11,7	12,1	12,6	11,8	12,4
1400	14,8	16,4	16,9	17,7	16,5	17,4
1600	16,9	18,8	19,3	20,2	18,9	19,8
1800	19,0	21,1	21,7	22,7	21,2	22,3
$q_d(veic/h)$			FFSd = 1	100 km/h		
200	2,0	2,2	2,3	2,7	2,3	2,4
400	4,0	4,5	4,6	5,3	4,6	4,8
600	6,0	6,7	7,0	8,0	6,9	7,1
800	8,0	8,9	9,3	10,7	9,2	9,5
1000	10,0	11,2	11,6	13,4	11,6	11,9
1400	14,1	15,6	16,2	18,7	16,2	16,6
1600	16,1	17,9	18,6	21,4	18,5	19,0
1800	18,1	20,1	20,9	24,1	20,8	21,4
q _d (veic/h)			FFSd = 1	110 km/h		
200	2,6	2,2	2,3	2,4	2,3	2,3
400	5,2	4,5	4,6	4,8	4,5	4,7
600	7,8	6,7	6,9	7,1	6,8	7,0
800		9,0	9,1	9,5	9,1	9,3
800	10,4	9,0	9,1	7,5	7,1	7,5



1400	18,1	15,7	16,0	16,7	15,8	16,3	
1600	20,7	17,9	18,3	19,0	18,1	18,6	
1800	23.3	20.2	20.6	21.4	20.4	21.0	



Tabela E.2: Densidade de Veículos em Pelotão direcional - COG 2, Modelo Linear

	Phv	(%)			
0	10	20	30	40	50
		FFSd =	70km/h		
2,1	2,2	2,2	2,3	2,2	2,2
4,2	4,3	4,4	4,5	4,5	4,4
6,3	6,5	6,7	6,8	6,7	6,6
8,4	8,6	8,9	9,0	9,0	8,8
10,5	10,8	11,1	11,3	11,2	10,9
14,7	15,1	15,5	15,8	15,7	15,3
16,8	17,2	17,7	18,1	17,9	17,5
18,9	19,4	20,0	20,4	20,1	19,7
		$FFS_d =$	80 km/h		
2,0	2,1	2,1	2,2	2,1	2,2
3,9	4,2	4,2	4,3	4,3	4,4
5,9	6,3	6,3	6,5	6,4	6,6
7,9	8,3	8,5	8,7	8,5	8,8
9,8	10,4	10,6	10,8	10,7	10,9
13,8	14,6	14,8	15,2	15,0	15,3
15,7	16,7	16,9	17,3	17,1	17,5
17,7	18,8	19,0	19,5	19,2	19,7
		FFSd =	90 km/h		
1,9	2,0	2,1	2,1	2,1	2,1
3,8	4,0	4,2	4,3	4,2	4,2
5,6	6,0	6,3	6,4	6,3	6,3
7,5	8,0	8,4	8,5	8,4	8,4
9,4	10,0	10,5	10,7	10,5	10,5
13,2	14,0	14,7	14,9	14,7	14,8
15,1	16,0	16,8	17,1	16,8	16,9
16,9	18,0	18,9	19,2	18,9	19,0
		FFSd = 1	100 km/h		
1,8	1,9	2,0	2,1	2,0	2,0
3,6	3,8	4,0	4,1	4,1	4,0
5,4	5,7	6,0	6,2	6,1	6,1
7,2	7,6	8,0	8,3	8,2	8,1
9,0	9,5	10,0	10,3	10,2	10,1
12,6	13,3	14,0	14,5	14,3	14,1
14,4	15,2	16,0	16,5	16,4	16,2
16,2	17,1	18,0	18,6	18,4	18,2
		FFSd = 1	110 km/h		
1,8	1,9	2,0	2,0	2,0	2,0
3,5	3,8	3,9	4,0	4,0	4,0
5,3	5,7	5,9	6,0	6,0	6,0
7,0	7,6	7,9	8,0	8,0	7,9
8,8	9,5	9,8	10,0	10,0	9,9
12,3	13,3	13,8	14,1	14,0	13,9
					15,9 17,9
	2,1 4,2 6,3 8,4 10,5 14,7 16,8 18,9 2,0 3,9 5,9 7,9 9,8 13,8 15,7 17,7 1,9 3,8 5,6 7,5 9,4 13,2 15,1 16,9 1,8 3,6 5,4 7,2 9,0 12,6 14,4 16,2	0       10         2,1       2,2         4,2       4,3         6,3       6,5         8,4       8,6         10,5       10,8         14,7       15,1         16,8       17,2         18,9       19,4         2,0       2,1         3,9       4,2         5,9       6,3         7,9       8,3         9,8       10,4         13,8       14,6         15,7       16,7         17,7       18,8         1,9       2,0         3,8       4,0         5,6       6,0         7,5       8,0         9,4       10,0         13,2       14,0         15,1       16,0         16,9       18,0         1,8       1,9         3,6       3,8         5,4       5,7         7,2       7,6         9,0       9,5         12,6       13,3         14,4       15,2         16,2       17,1         1,8       1,9         3,5       3,8	FFSd =  2,1	0         10         20         30           FFSd = 70km/h           2,1         2,2         2,2         2,3           4,2         4,3         4,4         4,5           6,3         6,5         6,7         6,8           8,4         8,6         8,9         9,0           10,5         10,8         11,1         11,3           14,7         15,1         15,5         15,8           16,8         17,2         17,7         18,1           18,9         19,4         20,0         20,4           FFSd = 80 km/h           2,0         2,1         2,1         2,2           3,9         4,2         4,2         4,3           5,9         6,3         6,3         6,5           7,9         8,3         8,5         8,7           9,8         10,4         10,6         10,8           13,8         14,6         14,8         15,2           15,7         16,7         16,9         17,3           17,7         18,8         19,0         19,5           FFSd = 90 km/h           1,9         2,0         2,1	0         10         20         30         40           FFSd = 70km/h           2,1         2,2         2,2         2,3         2,2           4,2         4,3         4,4         4,5         4,5           6,3         6,5         6,7         6,8         6,7           8,4         8,6         8,9         9,0         9,0           10,5         10,8         11,1         11,3         11,2           14,7         15,1         15,5         15,8         15,7           16,8         17,2         17,7         18,1         17,9           18,9         19,4         20,0         20,4         20,1           FFSd = 80 km/h           2,0         2,1         2,1         2,2         2,1           3,9         4,2         4,2         4,3         4,3           5,9         6,3         6,3         6,5         6,4           7,9         8,3         8,5         8,7         8,5           9,8         10,4         10,6         10,8         10,7           13,8         14,6         14,8         15,2         15,0           15,7



Tabela E.3: Densidade de Veículos em Pelotão direcional - COG 3, Modelo Linear

		Phv	(%)			
	0	10	20	30	40	50
$q_d(veic/h)$			FFSd =	70km/h		
200	2,3	2,4	2,5	2,5	2,4	2,4
400	4,6	4,9	5,0	5,0	4,8	4,8
600	7,0	7,3	7,5	7,4	7,3	7,2
800	9,3	9,7	10,0	9,9	9,7	9,6
1000	11,6	12,1	12,5	12,4	12,1	12,0
1400	16,2	17,0	17,5	17,4	16,9	16,8
1600	18,6	19,4	20,0	19,8	19,3	19,2
1800	20,9	21,8	22,5	22,3	21,8	21,0
$q_d(veic/h)$			$FFS_d =$	80 km/h		
200	2,1	2,3	2,3	2,4	2,3	2,4
400	4,3	4,6	4,7	4,8	4,6	4,8
600	6,4	6,9	7,0	7,2	6,9	7,2
800	8,6	9,2	9,3	9,6	9,3	9,6
1000	10,7	11,6	11,7	12,0	11,6	12,0
1400	15,0	16,2	16,3	16,8	16,2	16,8
1600	17,2	18,5	18,7	19,2	18,5	19,2
1800	19,3	20,8	21,0	21,6	20,8	21,0
q _d (veic/h)			FFSd =	90 km/h		
200	2,0	2,2	2,3	2,4	2,3	2,3
400	4,1	4,4	4,6	4,8	4,5	4,6
600	6,1	6,7	6,9	7,1	6,8	7,0
800	8,2	8,9	9,2	9,5	9,1	9,3
1000	10,2	11,1	11,5	11,9	11,3	11,0
1400	14,3	15,6	16,1	16,6	15,9	16,
1600	16,3	17,8	18,4	19,0	18,2	18,
1800	18,4	20,0	20,8	21,4	20,4	20,9
$q_d(veic/h)$			FFSd =	100 km/h		
200	1,9	2,1	2,2	2,3	2,2	2,2
400	3,9	4,2	4,4	4,6	4,4	4,5
600	5,8	6,4	6,6	6,9	6,7	6,7
800	7,8	8,5	8,8	9,2	8,9	8,9
1000	9,7	10,6	11,0	11,5	11,1	11,
1400	13,6	14,8	15,4	16,1	15,6	15,
1600	15,6	17,0	17,6	18,4	17,8	17,
1800	17,5	19,1	19,8	20,7	20,0	20,0
q _d (veic/h)			FFSd = 1	110 km/h		
200	1,9	2,1	2,2	2,2	2,2	2,2
400	3,8	4,2	4,3	4,5	4,3	4,3
600	5,7	6,4	6,5	6,7	6,5	6,5
800	7,5	8,5	8,7	8,9	8,7	8,7
1000	9,4	10,6	10,8	11,2	10,8	10,9
1400	13,2	14,8	15,2	15,6	15,2	15,2
1600	15,1	16,9	17,4	17,9	17,4	17,4
1800	17,0	19,1	19,5	20,1	19,5	19,5



Tabela E.4: Densidade de Veículos em Pelotão direcional - COG 4, Modelo Linear

	•	Phv	` ′	20	10	
( , // )	0	10	20	30	40	50
$q_d(veic/h)$				70km/h		
200	3,7	3,6	3,7	3,5	3,4	3,0
400	7,3	7,3	7,3	6,9	6,7	6,0
600	11,0	10,9	11,0	10,4	10,1	9,0
800	14,7	14,6	14,6	13,8	13,4	12.
1000	18,3	18,2	18,3	17,3	16,8	15,
1400	25,7	25,5	25,6	24,2	23,5	21.
1600	29,3	29,1	29,2	27,7	26,9	24,
1800	33,0	32,8	32,9	31,1	30,3	26,
$q_d(veic/h)$			$FFS_d =$	80 km/h		
200	3,4	3,5	3,6	3,5	3,4	3,0
400	6,9	7,0	7,2	6,9	6,7	6,0
600	10,3	10,4	10,8	10,4	10,1	9,0
800	13,8	13,9	14,4	13,8	13,4	12,
1000	17,2	17,4	17,9	17,3	16,8	15,
1400	24,1	24,4	25,1	24,2	23,5	21,
1600	27,6	27,9	28,7	27,7	26,8	24,
1800	31,0	31,3	32,3	31,1	30,2	26,
q _d (veic/h)			FFSd =	90 km/h		
200	3,3	3,4	3,5	3,4	3,3	3,0
400	6,6	6,7	7,0	6,8	6,7	6,0
600	9,8	10,1	10,5	10,2	10,0	8,9
800	13,1	13,5	14,0	13,6	13,3	11,
1000	16,4	16,9	17,5	17,0	16,6	14.
1400	22,9	23,6	24,5	23,8	23,3	20.
1600	26,2	27,0	28,0	27,2	26,6	23.
1800	29,5	30,4	31,5	30,6	29,9	26,
q _d (veic/h)			FFSd =	100 km/h		
200	3,1	3,2	3,3	3,3	3,2	2,9
400	6,2	6,5	6,7	6,5	6,4	5,8
600	9,4	9,7	10,0	9,8	9,6	8,
800	12,5	13,0	13,3	13,0	12,8	11,
1000	15,6	16,2	16,6	16,3	16,1	14,
1400	21,8	22,7	23,3	22,8	22,5	20,
1600	25,0	26,0	26,6	26,1	25,7	23.
1800	28,1	29,2	29,9	29,3	28,9	26,
q _d (veic/h)			FFSd =	110 km/h		
200	3,0	3,2	3,2	3,2	3,1	2,
400	6,0	6,4	6,5	6,4	6,3	5,0
600	9,0	9,6	9,7	9,6	9,4	8,
800	12,0	12,8	12,9	12,7	12,5	11.
1000	15,0	16,0	16,1	15,9	15,7	14.
1400	21,0	22,4	22,6	22,3	21,9	19.
1600	24,0	25,6	25,8	25,5	25,1	22.
1800	27,0	28,8	29,0	28,7	28,2	25,



Tabela E.5: Densidade de Veículos em Pelotão direcional - COG 5, Modelo Linear

		Phv	(%)			
	0	10	20	30	40	50
$q_d(veic/h)$			FFSd =	70km/h		
200	3,8	3,6	3,7	3,4	3,1	2,8
400	7,5	7,2	7,4	6,9	6,3	5,7
600	11,3	10,8	11,0	10,3	9,4	8,5
800	15,1	14,4	14,7	13,7	12,5	11,4
1000	18,8	18,0	18,4	17,2	15,7	14,2
1400	26,4	25,1	25,7	24,0	22,0	19,9
1600	30,1	28,7	29,4	27,5	25,1	22,7
1800	33,9	32,3	33,1	30,9	28,2	25,6
$q_d(veic/h)$			$FFS_d =$	80 km/h		
200	3,5	3,4	3,6	3,4	3,1	2,8
400	7,0	6,9	7,2	6,7	6,2	5,7
600	10,5	10,3	10,9	10,1	9,3	8,5
800	14,1	13,8	14,5	13,4	12,4	11,4
1000	17,6	17,2	18,1	16,8	15,5	14,2
1400	24,6	24,1	25,3	23,5	21,7	19,9
1600	28,1	27,6	28,9	26,8	24,9	22,7
1800	31,6	31,0	32,6	30,2	28,0	25,6
q _d (veic/h)			FFSd =	90 km/h		
200	3,3	3,4	3,5	3,3	3,1	2,8
400	6,7	6,8	7,0	6,6	6,1	5,7
600	10,0	10,2	10,5	9,8	9,2	8,5
800	13,3	13,6	14,0	13,1	12,3	11,3
1000	16,6	17,0	17,5	16,4	15,3	14,2
1400	23,3	23,7	24,6	23,0	21,5	19,8
1600	26,6	27,1	28,1	26,2	24,5	22,7
1800	30,0	30,5	31,6	29,5	27,6	25,5
q _d (veic/h)			FFSd =	100 km/h		
200	3,2	3,3	3,4	3,2	3,0	2,8
400	6,4	6,5	6,8	6,4	6,0	5,5
600	9,5	9,8	10,1	9,7	9,0	8,3
800	12,7	13,1	13,5	12,9	12,0	11,1
1000	15,9	16,4	16,9	16,1	15,0	13,8
1400	22,2	22,9	23,6	22,5	21,0	19,4
1600	25,4	26,2	27,0	25,7	24,0	22,1
1800	28,6	29,4	30,4	29,0	27,0	24,9
$q_d(veic/h)$			FFSd = 1	110 km/h		
200	3,1	3,2	3,3	3,1	2,9	2,7
400	6,1	6,3	6,5	6,3	5,8	5,3
600	9,2	9,5	9,8	9,4	8,7	8,0
800	12,2	12,7	13,0	12,6	11,6	10,6
1000	15,3	15,9	16,3	15,7	14,5	13,3
1400	21,4	22,2	22,8	22,0	20,4	18,6
1600	24,4	25,4	26,0	25,2	23,3	21,3
1800	27,5	28,6	29,3	28,3	26,2	23,9



Tabela E.6: Densidade de Veículos em Pelotão direcional - COG 1, Modelo Quadrático

0	10	20	30	40	
	10	20	30	40	50
		FFSd =	70km/h		
0,3	0,3	0,3	0,3	0,3	0,3
1,2	1,3	1,3	1,3	1,3	1,3
2,7	2,9	3,0	2,9	2,9	2,9
4,7	5,2	5,3	5,2	5,2	5,1
7,4	8,2	8,3	8,2	8,2	8,0
10,7	11,8	12,0	11,8	11,7	11,6
14,5	16,0	16,3	16,1	16,0	15,7
19,0	20,9	21,3	21,0	20,9	20,6
		$FFS_d =$	80 km/h		
0,3	0,3	0,3	0,3	0,3	0,3
1,1	1,3	1,3	1,3	1,3	1,2
2,5	2,9	2,9	2,8	2,8	2,8
4,5	5,1	5,1	5,1	5,0	4,9
7,1	7,9	8,0	7,9	7,9	7,7
10,2	11,4	11,6	11,4	11,3	11,1
13,9	15,5	15,7	15,5	15,4	15,2
18,1	20,3	20,6	20,2	20,1	19,8
		FFSd =	90 km/h		
0,3	0,3	0,3	0,3	0,3	0,3
1,1	1,2	1,3	1,3	1,2	1,2
2,5	2,8	2,9	2,8	2,8	2,8
4,4	4,9	5,1	5,0	5,0	4,9
6,8	7,7	8,0	7,9	7,7	7,7
9,8	11,0	11,5	11,3	11,2	11,1
13,4	15,0	15,7	15,4	15,2	15,1
17,4	19,6	20,4	20,1	19,8	19,7
		FFSd =	100 km/h		
0,3	0,3	0,3	0,3	0,3	0,3
1,0	1,2	1,2	1,2	1,2	1,2
2,4	2,6	2,8	2,8	2,7	2,7
4,2	4,7	5,0	4,9	4,9	4,8
6,5	7,3	7,8	7,7	7,6	7,5
9,4	10,6	11,2	11,1	11,0	10,9
12,8	14,4	15,2	15,1	15,0	14,8
16,7	18,8	19,9	19,8	19,6	19,3
		FFSd = 1	110 km/h		
0,3	0,3	0,3	0,3	0,3	0,3
1,3	1,2	1,2	1,2	1,2	1,2
2,9	2,6	2,8	2,7	2,7	2,7
5,1	4,7	4,9	4,8	4,8	4,8
8,0	7,3	7,7	7,5	7,5	7,4
11,6	10,6	11,1	10,8	10,8	10,7
15,7		15,1	14,7	14,8	14,6 19,0
	1,2 2,7 4,7 7,4 10,7 14,5 19,0 0,3 1,1 2,5 4,5 7,1 10,2 13,9 18,1 0,3 1,1 2,5 4,4 6,8 9,8 13,4 17,4 0,3 1,0 2,4 4,2 6,5 9,4 12,8 16,7 0,3 1,1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	1,2 1,3 2,7 2,9 4,7 5,2 7,4 8,2 10,7 11,8 14,5 16,0 19,0 20,9  0,3 0,3 1,1 1,3 2,5 2,9 4,5 5,1 7,1 7,9 10,2 11,4 13,9 15,5 18,1 20,3  0,3 0,3 1,1 1,2 2,5 2,8 4,4 4,9 6,8 7,7 9,8 11,0 13,4 15,0 17,4 19,6  0,3 0,3 1,0 1,2 2,4 2,6 4,2 4,7 6,5 7,3 9,4 10,6 12,8 14,4 16,7 18,8  0,3 0,3 1,3 1,2 2,9 2,6 5,1 4,7 8,0 7,3 11,6 10,6 15,7 14,4	0,3 0,3 0,3 1,2 1,3 1,3 2,7 2,9 3,0 4,7 5,2 5,3 7,4 8,2 8,3 10,7 11,8 12,0 14,5 16,0 16,3 19,0 20,9 21,3 FFSd = 0,3 0,3 1,1 1,3 1,3 2,5 2,9 2,9 4,5 5,1 5,1 7,1 7,9 8,0 10,2 11,4 11,6 13,9 15,5 15,7 18,1 20,3 20,6 FFSd = 0,3 0,3 0,3 1,1 1,2 1,3 2,5 2,8 2,9 4,4 4,9 5,1 6,8 7,7 8,0 9,8 11,0 11,5 13,4 15,0 15,7 17,4 19,6 20,4 FFSd = 0,3 0,3 0,3 1,0 1,2 1,2 2,4 2,6 2,8 4,2 4,7 5,0 6,5 7,3 7,8 9,4 10,6 11,2 12,8 14,4 15,2 16,7 18,8 19,9 FFSd = 0,3 0,3 0,3 1,0 1,2 1,2 2,4 2,6 2,8 4,2 4,7 5,0 6,5 7,3 7,8 9,4 10,6 11,2 12,2 1,2 2,4 2,6 2,8 4,2 4,7 5,0 6,5 7,3 7,8 9,4 10,6 11,2 12,2 1,2 2,4 2,6 2,8 4,2 4,7 5,0 6,5 7,3 7,8 9,4 10,6 11,2 12,2 1,2 2,4 2,6 2,8 14,4 15,2 16,7 18,8 19,9 FFSd = 0,3 0,3 0,3 1,3 1,2 1,2 2,9 2,6 2,8 5,1 4,7 4,9 8,0 7,3 7,7 11,6 10,6 11,1 15,7 14,4 15,1	1,2         1,3         1,3         1,3           2,7         2,9         3,0         2,9           4,7         5,2         5,3         5,2           7,4         8,2         8,3         8,2           10,7         11,8         12,0         11,8           14,5         16,0         16,3         16,1           19,0         20,9         21,3         21,0           FFS _d = 80 km/h           0,3         0,3         0,3         0,3           1,1         1,3         1,3         1,3           2,5         2,9         2,9         2,8           4,5         5,1         5,1         5,1           7,1         7,9         8,0         7,9           10,2         11,4         11,6         11,4           13,9         15,5         15,7         15,5           18,1         20,3         20,6         20,2           FFSd = 90 km/h           0,3         0,3         0,3         0,3           1,1         1,2         1,3         1,3           2,5         2,8         2,9         2,8           4,4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$



Tabela E.7: Densidade de Veículos em Pelotão direcional - COG 2, Modelo Quadrático

		Phv (%)									
	0	10	20	30	40	50					
$q_d(veic/h)$			FFSd =	70km/h							
200	0,3	0,3	0,3	0,3	0,3	0,3					
400	1,0	1,1	1,1	1,2	1,2	1,1					
600	2,3	2,5	2,5	2,7	2,6	2,5					
800	4,1	4,4	4,5	4,8	4,6	4,4					
1000	6,3	6,9	7,0	7,5	7,3	6,9					
1400	9,1	9,9	10,0	10,8	10,5	9,9					
1600	12,4	13,5	13,7	14,7	14,2	13,4					
1800	16,2	17,6	17,8	19,2	18,6	17,5					
$q_d(veic/h)$			$FFS_d =$	80 km/h							
200	0,2	0,3	0,3	0,3	0,3	0,3					
400	1,0	1,1	1,1	1,2	1,1	1,1					
600	2,2	2,4	2,4	2,6	2,5	2,5					
800	3,9	4,3	4,3	4,6	4,5	4,4					
1000	6,0	6,7	6,7	7,2	7,0	6,9					
1400	8,7	9,7	9,6	10,4	10,1	9,9					
1600	11,9	13,2	13,1	14,1	13,7	13,4					
1800	15,5	17,3	17,2	18,5	17,9	17,5					
$q_d(veic/h)$			FFSd =	90 km/h							
200	0,2	0,3	0,3	0,3	0,3	0,3					
400	0,9	1,0	1,1	1,1	1,1	1,1					
600	2,1	2,4	2,4	2,6	2,5	2,4					
800	3,7	4,2	4,3	4,6	4,4	4,3					
1000	5,8	6,6	6,7	7,2	6,9	6,7					
1400	8,4	9,4	9,7	10,3	10,0	9,6					
1600	11,5	12,8	13,2	14,1	13,5	13,0					
1800	15,0	16,8	17,2	18,4	17,7	17,0					
$q_d(veic/h)$			FFSd = 1	100 km/h							
200	0,2	0,3	0,3	0,3	0,3	0,3					
400	0,9	1,0	1,0	1,1	1,1	1,0					
600	2,0	2,3	2,3	2,5	2,4	2,3					
800	3,6	4,0	4,1	4,5	4,3	4,2					
1000	5,7	6,3	6,5	7,0	6,8	6,5					
1400	8,2	9,0	9,3	10,1	9,8	9,4					
1600	11,1	12,3	12,7	13,7	13,3	12,7					
1800	14,5	16,0	16,5	17,9	17,4	16,7					
$q_d(veic/h)$			FFSd = 1	110 km/h							
200	0,2	0,3	0,3	0,3	0,3	0,3					
400	0,9	1,0	1,0	1,1	1,1	1,0					
600	2,0	2,3	2,3	2,5	2,4	2,3					
800	3,6	4,0	4,1	4,4	4,3	4,1					
1000	5,6	6,3	6,4	6,8	6,7	6,4					
1400	8,0	9,1	9,1	9,8	9,6	9,3					
1600	10,9	12,4	12,5	13,3	13,1	12,6					
1800	14,3	16,1	16,3	17,4	17,1	16,5					



Tabela E.8: Densidade de Veículos em Pelotão direcional - COG 3, Modelo Quadrático

	Phv (%)									
	0	10	20	30	40	50				
$q_d(veic/h)$			FFSd =	70km/h						
200	0,3	0,3	0,3	0,3	0,3	0,3				
400	1,1	1,2	1,2	1,2	1,2	1,2				
600	2,5	2,8	2,8	2,6	2,8	2,7				
800	4,4	4,9	5,0	4,7	5,0	4,8				
1000	6,9	7,7	7,8	7,3	7,8	7,4				
1400	10,0	11,1	11,2	10,6	11,2	10,7				
1600	13,6	15,1	15,3	14,4	15,3	14,6				
1800	17,8	19,7	20,0	18,8	19,9	19,0				
$q_d(veic/h)$			$FFS_d =$	80 km/h						
200	0,3	0,3	0,3	0,3	0,3	0,3				
400	1,0	1,2	1,2	1,2	1,2	1,2				
600	2,3	2,7	2,7	2,6	2,7	2,7				
800	4,1	4,8	4,7	4,6	4,8	4,8				
1000	6,5	7,4	7,4	7,2	7,4	7,4				
1400	9,3	10,7	10,6	10,4	10,7	10,7				
1600	12,7	14,6	14,5	14,2	14,6	14,6				
1800	16,5	19,0	18,9	18,5	19,0	19,0				
$q_d(veic/h)$			FFSd =	90 km/h						
200	0,3	0,3	0,3	0,3	0,3	0,3				
400	1,0	1,2	1,2	1,2	1,2	1,2				
600	2,3	2,6	2,7	2,6	2,7	2,6				
800	4,0	4,6	4,7	4,6	4,7	4,6				
1000	6,3	7,3	7,4	7,2	7,4	7,2				
1400	9,0	10,5	10,6	10,4	10,6	10,4				
1600	12,3	14,2	14,5	14,1	14,5	14,2				
1800	16,0	18,6	18,9	18,4	18,9	18,5				
$q_d(veic/h)$			FFSd = 1	100 km/h						
200	0,2	0,3	0,3	0,3	0,3	0,3				
400	1,0	1,1	1,1	1,1	1,2	1,1				
600	2,2	2,5	2,6	2,5	2,6	2,5				
800	3,9	4,5	4,6	4,5	4,6	4,5				
1000	6,0	7,0	7,1	7,0	7,3	7,1				
1400	8,7	10,0	10,3	10,1	10,4	10,2				
1600	11,8	13,7	14,0	13,8	14,2	13,9				
1800	15,4	17,9	18,3	18,0	18,6	18,1				
$q_d(veic/h)$			FFSd = 1	110 km/h						
200	0,2	0,3	0,3	0,3	0,3	0,3				
400	0,9	1,1	1,1	1,1	1,1	1,1				
600	2,1	2,5	2,5	2,5	2,6	2,5				
800	3,8	4,5	4,5	4,4	4,5	4,5				
1000	5,9	7,0	7,1	6,8	7,1	7,0				
1400	8,5	10,1	10,2	9,9	10,2	10,0				
1600	11,6	13,7	13,8	13,4	13,9	13,7				
1800	15,1	17,9	18,1	17,5	18,2	17,8				



Tabela E.9: Densidade de Veículos em Pelotão direcional - COG 4, Modelo Quadrático

		Phv	(%)			
	0	10	20	30	40	50
$q_d(veic/h)$			FFSd =	70km/h		
200	0,5	0,5	0,4	0,4	0,4	0,4
400	1,9	1,8	1,8	1,6	1,6	1,4
600	4,2	4,1	4,0	3,6	3,7	3,2
800	7,4	7,3	7,2	6,5	6,5	5,6
1000	11,6	11,4	11,2	10,1	10,1	8,8
1400	16,7	16,4	16,1	14,5	14,6	12,7
1600	22,8	22,4	21,9	19,8	19,9	17,2
1800	29,7	29,2	28,6	25,9	26,0	22,5
$q_d(veic/h)$			$FFS_d =$	80 km/h		
200	0,4	0,4	0,4	0,4	0,4	0,4
400	1,7	1,8	1,8	1,6	1,6	1,4
600	3,9	3,9	4,0	3,6	3,6	3,2
800	7,0	7,0	7,0	6,5	6,4	5,6
1000	10,9	10,9	11,0	10,1	10,0	8,8
1400	15,7	15,8	15,9	14,6	14,5	12,7
1600	21,4	21,5	21,6	19,8	19,7	17,2
1800	27,9	28,0	28,2	25,9	25,7	22,5
$q_d(veic/h)$			FFSd =	90 km/h		
200	0,4	0,4	0,4	0,4	0,4	0,4
400	1,7	1,7	1,7	1,6	1,6	1,4
600	3,8	3,9	3,9	3,6	3,6	3,2
800	6,7	6,9	6,9	6,4	6,5	5,6
1000	10,4	10,8	10,9	10,0	10,1	8,8
1400	15,0	15,5	15,6	14,4	14,5	12,6
1600	20,4	21,1	21,3	19,7	19,8	17,2
1800	26,7	27,5	27,8	25,7	25,8	22,4
$q_d(veic/h)$			FFSd =	100 km/h		
200	0,4	0,4	0,4	0,4	0,4	0,3
400	1,6	1,7	1,7	1,5	1,6	1,4
600	3,6	3,7	3,7	3,5	3,5	3,1
800	6,4	6,6	6,6	6,2	6,2	5,6
1000	10,0	10,3	10,3	9,6	9,7	8,7
1400	14,3	14,9	14,9	13,9	14,0	12,5
1600	19,5	20,2	20,3	18,9	19,1	17,0
1800	25,5	26,4	26,5	24,7	25,0	22,2
$q_d(veic/h)$			FFSd =	110 km/h		
200	0,4	0,4	0,4	0,4	0,4	0,3
400	1,5	1,6	1,6	1,5	1,5	1,3
600	3,5	3,7	3,6	3,4	3,5	3,0
800	6,2	6,5	6,4	6,1	6,2	5,4
1000	9,6	10,2	10,0	9,5	9,6	8,4
1400	13,9	14,7	14,5	13,7	13,9	12,1
1600	18,9	20,0	19,7	18,6	18,9	16,5
1800	24,6	26,1	25,7	24,3	24,6	21,5



Tabela E.10: Densidade de Veículos em Pelotão direcional - COG 5, Modelo Ouadrático

		Quad				
		Phv				
	0	10	20	30	40	50
$q_d(veic/h)$			FFSd =	70km/h		
200	0,5	0,5	0,5	0,5	0,4	0,4
400	1,9	1,8	1,8	1,8	1,6	1,4
600	4,2	4,1	4,1	4,1	3,7	3,2
800	7,5	7,3	7,4	7,3	6,5	5,7
1000	11,7	11,5	11,5	11,4	10,2	8,9
1400	16,8	16,5	16,6	16,4	14,7	12,9
1600	22,9	22,5	22,5	22,3	20,0	17,5
1800	29,9	29,3	29,4	29,1	26,1	22,8
$q_d(veic/h)$			$FFS_d =$	80 km/h		
200	0,4	0,4	0,5	0,4	0,4	0,4
400	1,7	1,8	1,8	1,8	1,6	1,4
600	3,9	4,0	4,1	4,0	3,6	3,2
800	7,0	7,0	7,3	7,1	6,5	5,7
1000	10,9	11,0	11,3	11,1	10,1	8,9
1400	15,7	15,9	16,3	16,0	14,6	12,9
1600	21,4	21,6	22,2	21,8	19,9	17,5
1800	27,9	28,2	29,1	28,4	25,9	22,8
q _d (veic/h)			FFSd =	90 km/h		
200	0,4	0,4	0,4	0,4	0,4	0,4
400	1,7	1,8	1,8	1,8	1,6	1,4
600	3,7	4,0	4,0	3,9	3,6	3,2
800	6,6	7,0	7,1	7,0	6,4	5,7
1000	10,4	11,0	11,1	11,0	10,0	9,0
1400	14,9	15,8	16,0	15,8	14,4	12,9
1600	20,3	21,5	21,8	21,5	19,6	17,5
1800	26,6	28,1	28,4	28,0	25,6	22,9
q _d (veic/h)			FFSd = 1	100 km/h		
200	0,40	0,43	0,43	0,43	0,39	0,35
400	1,59	1,70	1,72	1,72	1,58	1,42
600	3,57	3,83	3,86	3,86	3,55	3,19
800	6,35	6,81	6,86	6,87	6,31	5,66
1000	9,92	10,64	10,72	10,74	9,85	8,85
1400	14,29	15,32	15,44	15,46	14,19	12,74
1600	19,45	20,85	21,02	21,04	19,32	17,34
1800	25,40	27,23	27,45	27,48	25,23	22,65
$q_d(veic/h)$			FFSd = 1	110 km/h		
200	0,4	0,4	0,4	0,4	0,4	0,3
400	1,5	1,7	1,7	1,7	1,5	1,4
600	3,4	3,7	3,7	3,8	3,4	3,1
800	6,1	6,6	6,6	6,7	6,1	5,4
1000	9,6	10,4	10,3	10,5	9,6	8,5
1400	13,8	14,9	14,9	15,2	13,8	12,2
1600	18,7	20,3	20,3	20,6	18,7	16,7
1800	24,4	26,6	26,5	27,0	24,5	21,8